

Thermal and thermo-oxidative degradation of High density polyethylene/Fullerene nanocomposites

Liping Zhao, Tao Zhang, Peng Mao, Zhengping Fang*

Background: In 1991, Krusic *et al.* revealed the characteristic of fullerene (C_{60}) as efficient free radical scavenger. This suggests the possible use of C_{60} as an effective radical terminator in chain reactions. The degradation of most polymers is through a free radicals chain reaction; in other words, free radicals are the primary cause of polymers degradation. It has been reported that C_{60} could remarkably retard the thermal degradation of polypropylene (PP). The degradation of high density polyethylene (HDPE) is through a free radical chain reaction just as PP. However, much less side chains are found in HDPE than in PP. Therefore, the cross-linking reaction during thermal thermo-oxidative degradation for HDPE could not been ignored. The mechanisms of thermal and thermo-oxidative degradation for HDPE/C₆₀ nanocomposites are and believed to differ from that of PP/C_{60} nanocomposites and need to be investigated in details.

Preparation: HDPE/C₆₀ nanocomposites were prepared via melt compounding. Nanocomposites containing 0.05, 0.1, 0.25, 0.5 and 2.5 wt% of C₆₀ were designated as C_{60} -0.05, C_{60} -0.1, C_{60} -0.25, C_{60} -0.5 and C_{60} -2.5, respectively.

Thermal and thermo-oxidative degradation for HDPE/ C_{60} nanocomposites:

Mechanisms of Thermal and thermo-oxidative degradation for HDPE/C₆₀ nanocomposites:

Fig. 3 Schematic representation of the mechanism for the thermal degradation of HDPE/C₆₀ nanocomposites in N₂: (a) the thermal degradation process of

HDPE; (b) the thermal degradation process of HDPE/ C_{60} nanocomposites.

Fig. 1 TG curves for pure HDPE and HDPE/ C_{60} nanocomposites in N₂ (a) and air (b)

Fig. 4 Schematic representation of the mechanism for the thermal degradation of HDPE/ C_{60} nanocomposites in air: (a) the thermo-oxidative degradation

Fig. 2 Dependence of storage moduli (G') on temperature for HDPE and HDPE/ C_{60}

nanocomposites.

Conclusions: The presence of C_{60} improves the thermal stability of HDPE in N_2 by trapping carbon centered radicals and it is quite independent of concentration. In air, the thermal stability of HDPE is remarkably improved, especially at high C_{60} content. With high C_{60} concentration, it traps alkyl peroxide radicals and alkyl radicals to inhibit the hydrogen abstraction to suppress the chain scission, which plays a dominate role in the thermal oxidative degradation and changing the degradation of HDPE.

process of HDPE; (b) the thermo-oxidative degradation process of HDPE with

low concentration of C_{60} ; (c) the thermo-oxidative degradation process of

HDPE with low concentration of C_{60} .

References

[1] Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of C₆₀. Science 1991;54:1183-1185.

[2] Zanetti M, Bracco P, Costa L. Thermal degradation behavior of PE/clay

nanocomposites. Polym Degrad Stab 2004;85:657-665.

Acknowledgement

National Natural Science Foundation of China (No. 51073140) Zhejiang Provincial Natural Science Foundation (No. LY12E03003)