

N-type pyrazine-based luminogens with aggregation-induced emission characteristics Ming Chen(11229038)^a, Jing Zhi Sun^a, Anjun Qin^{*a}, and Ben Zhong Tang ^{*a,b}

^a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China

^b Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China

INTRODUCTION

Among luminogens with aggregation-induced emission (AIE) characteristics, N-type molecules are rare in comparison with P-type and neutral species in despite of their indispensable roles in functions as electron transport and electron acceptor materials.¹ During our exploration for new AIE-active luminogens, we found that a pyrazine derivative features such property.² Furthermore, thanks to its electron-deficent property, this molecule could also serve as N-type material. In this work, N-type pyrazine-based triazoles with 1,4- and 1,5-regioregular isomers were prepared via Cu- and Ru-catalyzed azide-alkyne click reaction. These luminogens are AIE-active and could form charge-transfer complexes with triphenylamine (TPA).³

RESULTS AND DISCUSSION

Molecular Structures

Photo-physical Property

Charge Transfer Complexes

1,5-isomer

Scheme 1. Synthetic routes to pyrazine-based 1,4-and 1,5-triazoles by click reaction.

Structure Characterization

Wavelength (nm)

isity (au)

isomer (right).

Water fraction (%)

Wavelength (nm)

Water fraction (%)

С

Figure 4. (A) PL spectra of 1,4-isomer/TPA complex in THF and its aqueous mixtures. (B) Changes of PL intensity of 1,4-isomer/TPA (red) and 1,5-isomer/TPA (blue) complexes with various fractions of water content (C) Photographs of 1,4-isomer, 1,5-isomer and their complexes with TPA in solids. All isomer/TPA complexes here prepared with the molar ratio: 1:1

CONCLUSIONS

(red) and 1,5- (blue) isomers.

N-type pyrazine-based 1,4- and 1,5-regioregular triazoles, synthesized via click reactions, exhibit a discriminative AIE features with pale blue and dark blue emission. These luminogens could form charge-transfer complexes with TPA and emit red light in the aggregate states. This work thus offers an attractive strategy to fine-tune the emission of AIE luminogens by chemical or physical approaches.

ACKNOWLEDGMENTS

This work was partially supported by the key project of the Ministry of Science and Technology of China (2013CB834702) and the National Science Foundation of China (21222402 and 21174120).

REFERENCES

[1] Y. Hong and B. Z. Tang *et al. Chem. Soc. Rev.* 2011, *40*, 5361.
[2] A. Qin and B. Z. Tang *et al. Appl. Phys. Lett.* 2009, 94, 253308.
[3] A. Qin and B. Z. Tang *et al. Chem. Soc. Rev*, 2010, *39*, 2522.