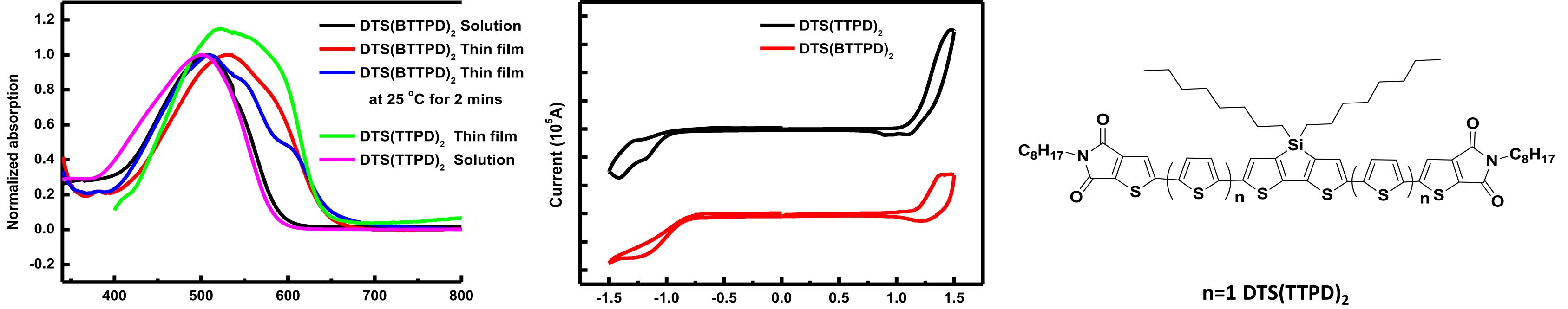
Synthesis and characterization of new electron-withdrawing moiety thieno[2,3-c] pyrrole-4,6- dione-based molecules for small molecule solar cells

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Lab of Silicon Materials, & Department of Polymer Science and Engineering, Zhejiang University


Introduction

Organic photovoltaic (OPV) cells have become a promising alternative technology for producing clean and renewable energy due to their unique advantages, such as low-cost, simple manufacturing process and light weight. The imide moiety from thieno[2,3-c] pyrrole-4,6-dione (TPD) is a simple and common electron-withdrawing substituent which can be easily modified to improve the solubility and efficiently lower the HOMO of materials while maintaining or reducing band gap. Therefore new conjugated small molecules $DTS(BTTPD)_2$ and $DTS(TTPD)_2$ of the acceptor- π -donor- π -acceptor type end-capped with thieno[2,3-c] pyrrole-4,6-dione (TPD) units for small molecule solar cells have been

prepared through coupling of dithienosilole (DTS) and TPD units bridged with thienylene and bithienylene[1].

Optical and Electrochemical properties

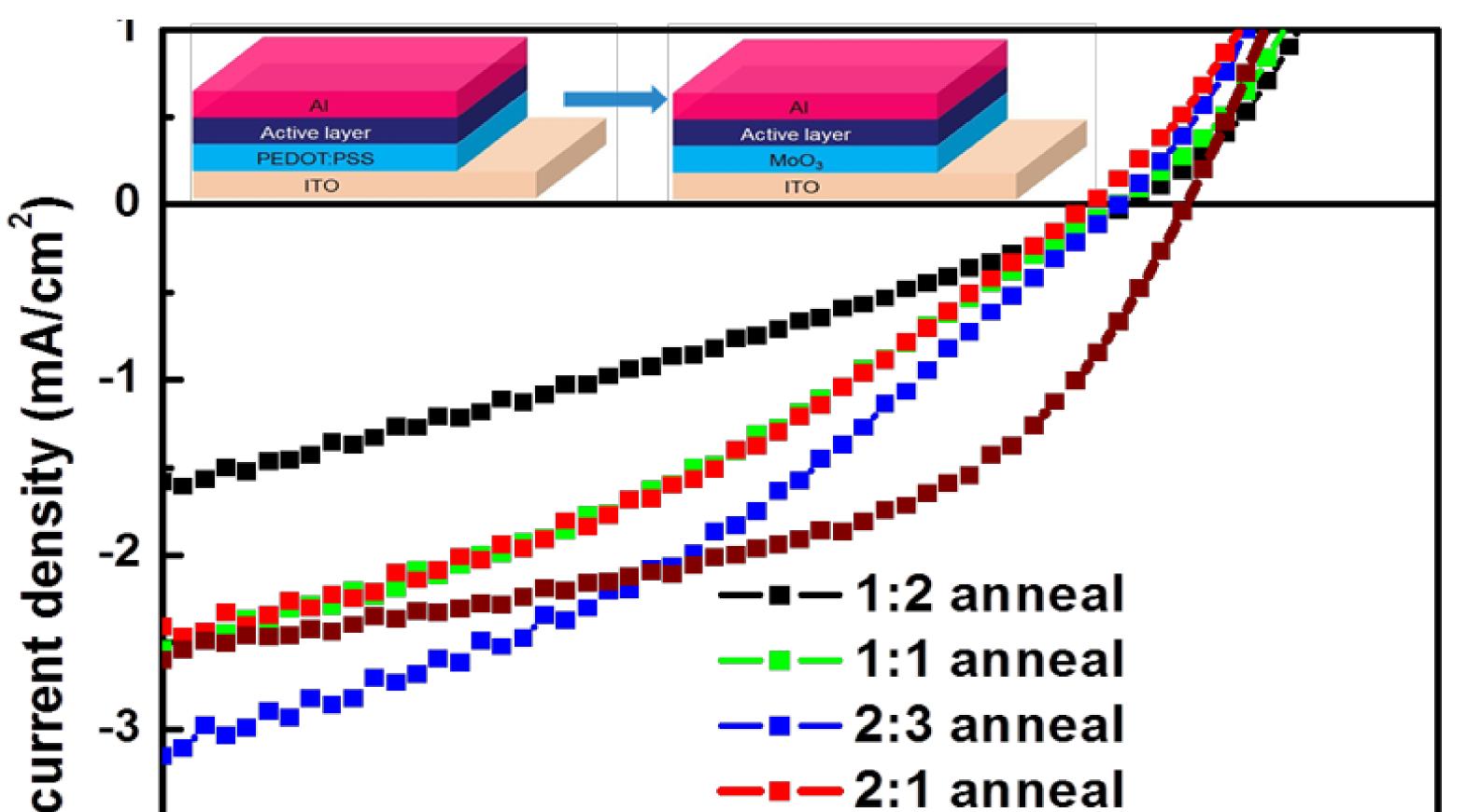
Compared to the solution, the absorption peaks of the thin films are broadened and exhibit red-shift by 20 nm and 30 nm for DTS(BTTPD)₂ and DTS(TTPD)₂, respectively, indicating good intermolecular interaction and that significant π - π stacking occurred in the solid state. Interestingly, when the thin film of DTS(BTTPD)₂ was placed for 2 min at the room temperature, the absorption maxima hypochromatic shifted to 511 nm, suggesting that H-aggregates might be formed in the solid state. These small molecules had very similar optical band gaps (1.87eV and 1.92 eV) and fairly close HOMO energy levels (-5.52 and -5.55 eV) for DTS(BTTPD)₂ and DTS(TTPD)₂, respectively.

Potential (V vs. SCE)

Figure 2. CV traces of DTS(BTTPD)₂ and DTS(TTPD)₂

Wavelength (nm)

Figure 1. UV-vis absorption spectra of $DTS(BTTPD)_2$ and $DTS(TTPD)_2$ in CHCl₃ solution and the thin film.


Photovoltaic property

 $1.5G, 100 \text{ mW cm}^{-2}.$

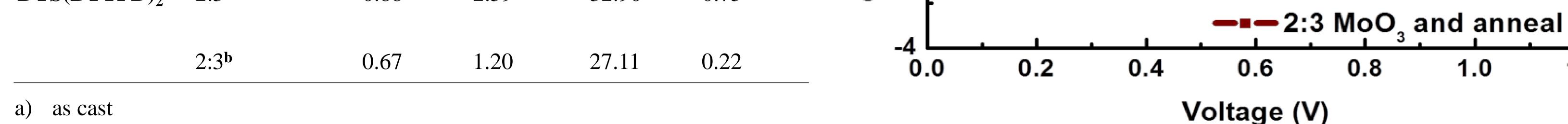

Molecule	Donor: PC ₆₁ BM	V _{oc}	J _{sc}	FF	PCE
	(weight ratios)	(V)	(mA/cm ²)	(%)	(%)
DTS(TTPD) ₂	2:3ª	0.99	2.28	31.01	0.70
	2:3 ^b	0.97	2.60	47.58	1.20
$DTS(BTTPD)_2$	2:3ª	0.88	2.59	32.90	0.75

Table 1. Optimized photovoltaic performance for normal geometry devices based on

with $DTS(TTPD)_2$ or $DTS(BTTPD)_2$: $PC_{61}BM$ blends under illumination of AM

 $n=2 DTS(BTTPD)_2$

b) annealed at 110 ° C

Figure 3. J–V curves obtained from normal geometry devices with different **DTS(TTPD)**₂: $PC_{61}BM$ blends annealed at 110° C for 3 min.

1.2

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, No. 50990063) and the Danish National Research Foundation and the NSFC (No. 51011130028) for the *Danish-Chinese Center for Organic based Photovoltaic Cells*.

References

[1] L. Fu, H. B. Pan, T. T. Larsen-Olsen, T. R. Andersen, E. Bundgaard, F. C. Krebs, and H. Z. Chen, DYES PIGMENTS. 2012,92,1384-93.