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Abstract: Organic micropollutants in aquatic environment such as plasticizer, pesticide and pharmaceuticals, have posed a serious threat to
human health and are emerging as a great challenge to humanity. Here we demonstrate a water-insoluble crosslinked B-cyclodextrin (B-CD) polymer
able to remove a broad-spectrum of organic micropollutants from water by rapid adsorption. The B-CDPs were used to adsorb various organic
micropollutants in water by static or dynamic adsorption process. It was found that more than 99% micropollutants in water were removed by
flowing the feed water through the column of B-CDPs. The results of static adsorption experiments indicated the adsorption process was fast and
the adsorption capacity was very high (the maximal value was 113.0 mg of bisphenol A per gram of 3-CDP).
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Fig. 1. (@) Synthesis of 3-CDP from nucleophilic aromatic substitution reaction. (b) Schematic of 3-CDP
structure.
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(" Results and discussions A
1. Characterization of 3-CDP.
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Fig. 2. (a) Powder X-ray diffraction pattern of 3-CD, DFPS and 1-2 B-CDP (Inset displays scanning
electron microscopy image of 1-2 3-CDP), (b) FTIR spectra of 3-CD, DFPS and various 3-CDPs, (c)
Solid-state 13C NMR spectra of 3-CD, DFPS and 1-2 B-CDP, (d) Pore structure of 1-2 3-CDP calculated
\by mercury porosimetry method. /
/2. Batch adsorption kinetic studies. )
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Fig. 3. Removal efficiency of BPA by various 3-CDPs.
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Fig. 4. Fitting curve and corresponding linear fitting plot of BPA adsorption kinetic of quasi-first-order
\ kinetic model (a, ¢) and quasi-second-order kinetic model (b, d), respectively.
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" Table 1. Fitting parameters of BPA adsorption kinetic studies

Experimental quasi-first-order kinetic model quasi-second-order kinetic model

B-CDP

ge(mg/g) qe(mg/g)  ki(min™) R* ge(mg/g) ki(g/mg-min)  R?

1-2 2287 16.08 0.2557 0.9565 23.33 0.0566 0.55954

The pseudo-second-order kinetic model is more suitable for describing
the adsorption process than the quasi-first-order kinetics model,
indicating that the adsorption behavior between various B-CDPs and
__BPA is mainly attributed to chemical interaction.
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/" 3. Batch adsorption thermodynamic studies.
(El) 120 | (b) 120 b

40 F =

experimental data
Langmur 1sotherm fit

= experimental data
1 — Freundlich isotherm fit

™ ] B 1 L L L i i
0.1 0.2 0.3 0.4 0.5

Ce (mmol/L)

E '] i '] 2 [ E ]
0.2 0.3 0.4 0.0

Ce (mmol/L)

L L I
0.0 0.1

s experimental data
Langmuir plot

0008F = " .

0 30 60 90 120 -1.2
1/C, (L/mmol) IgC,

Fig. 5. Fitting curve and corresponding linear fitting plot of BPA adsorption thermodynamic of Langmuir

Isotherm model (a, ¢) and Freundlich isotherm model (b, d), respectively.
Table 2. Fitting parameters of BPA adsorption thermodynamic studies

= experimental data
L — Freundlich plot

-1.6 .8 -0.4

Langmuir model Freundlich model

B-CDP

K. R? Kr n R?

Admax(mg/g)

1-2 112.99 30.32 0.9953 186.29 2.46 0.9529

The adsorption data fits better with the Langmuir isotherm model,
indicating that the adsorption process iIs mainly a relatively
homogeneous monolayer adsorption. The obtained maximum
adsorption capacity (q,,) of 1-2 B-CDP to BPA is 112.99 mg/g, which is
probably attributed to the formation of mesoporous structure and

\_superior loading capacity of B-CD.
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4 4. Flow-through adsorption experiments and regeneration experiments.
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Fig. 6. Structure of each tested organic micropollutant.
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Fig. 7. (a) Removal efficiency of each pollutant (0.1 mM) by 3-CDP column, (b) Removal efficiency of

60

=

BPA

BPS 2-NO 24-DCP PR

\_ BPA after consecutive regeneration cycles.

~

v

of removal efficiency) even after five filtration-regeneration cycles.

Conclusions: Water-insoluble cross-linked B-CDPs were successfully synthesized by nucleophilic aromatic substitution reaction. More than 99% of
micropollutants such as plastic components, dye intermediates, pesticide intermediates and pharmaceuticals in water were removed by flowing the
feed water through the column of B-CDPs. The adsorption process can be fitted well with the quasi-second-order kinetics and the Langmuir isothermal
adsorption model, suggesting that it is mainly a chemical adsorption of monolayer. The adsorption ability of B-CDPs was kept nearly unchanged (99%
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