

Dynamics Heterogeneity in Silica filled Nitrile Butadiene Rubber

11729007 Huilong Xu, Yihu Song*, Qiang Zheng*

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

Abstract: Nanoparticles play an important role in improving the mechanical properties of polymers, but the underline mechanism of the impact of nanoparticle on polymer chain dynamics is far from being well understood. Many works focusing on segmental relaxation give

contradictory interpretations. The picture about structured interfacial phase does not reach an agreement. Quantifying the filler effect on the heterogeneous polymer dynamics remains still a quite charming and challenging topic.

In present study, dynamics of nitrile butadiene rubber (NBR) filled with silicas of varying loading, specific surface area and surface chemistry are comprehensively investigated. We compare the difference in compounds (before extraction) and filler gels (after extraction) for providing a general understanding of the heterogeneous dynamics of polymer around filler.

Results and Discussion

1. Bound Rubber

Table 1. Content of rubber in filler gels

Filler Gel	Content of Rubber (<i>w</i> %)	Volume Fraction	Content of Bound Rubber ($oldsymbol{arphi}_{BdR}$)				
E-A200(0.15)	28.4±0.6	0.48 ± 0.01	0.17±0.02				
E-A200(0.21)	33.1±0.5	0.53 ± 0.01	0.31 ± 0.02				
E-A200(0.26)	41.6 ± 1.5	0.62 ± 0.03	0.54 ± 0.03				
E-A200(0.30)	40.0 ± 0.8	0.60 ± 0.02	0.66 ± 0.01				
E-A380(0.30)	43.9 ± 0.4	0.64 ± 0.01	0.71 ± 0.01				
E-R974(0.30)	33.4±0.5	0.54 ± 0.01	0.54±0.02				
A200(x), A380(x) and fraction of filler.	nd R974(x) are Compou	nds with A200, A380	and R974. x is volume				

2. Segmental Dynamics: Glassy Layer

Figure 3. (a) Dielectric loss ε'' as a function of frequency f for neat NBR and compounds at 0 °C, and (b) relaxation times of bulky segmental relaxation and Arrhenius-like interfacial phase as a function of reciprocal temperature 1/T. (c) normalized dielectric loss vs normalized frequency. In (a), the black line, red curve and dash red curve represent the contribution of dc conduction, restricted layer and bulky layer, respectively. In (c), the lines and curves are drawn according to VFT and Arrhenius equations, respectively.

Figure 1. Normalized reserved capacity $C_p/(1-w)$ of neat NBR and its compounds as a function of temperature T in modulated differential scanning calorimetry (MDSC) testing.

MDSC allowing detection of relaxation of segments except for those totally immobilized on the surface of filler is employed to investigate polymer dynamics near Tg.

Table 2. MDS	SC results fo	r NBR and th	he filler ge	els			10								
Sample	T _g	$\delta T_{\rm g}$	ΔC_{p}	W _{eg}	$w_{eg} \cdot arphi_{BdR}$	ξ		Table 3. (Contents an	d thickness	ses of glas	sy and rest	tricted lay	/ers.	
	(ºC)	(ºC)	(J/g/K)	(%)	(%)	(nm)			MDS	SC		BI	DS		
E_A200(0 15)	-30 4 + 0 8	127+09	0 1 2 5 5	105+06	17+01	0 08 + 0 03			Glassy layer		HRF layer		AR	ARF layer	
L-A200(0.13)	-30.4 <u>-</u> 0.8	12.7 <u>-</u> 0.9	0.1233	10.5 - 0.0	1.7 - 0.1	0.98 - 0.05		Compounds	Contont w	Thickness	Content	Thickness	Content	: Thickness	
E-A200(0.21)	-33.9±0.8	12.4 ± 1.0	0.1454	11.1 ± 0.7	3.5±0.2	0.87 ± 0.02	$+$ \sim		Content W _g	D_g	W _{HRF}	D_{HRF}	W _{ARF}	D_{ARF}	
E A200(0 26)	25 2 + 0 4	107+05	0 1740	140+10	° 0+0 €	0.06 ± 0.04	$\square R974(0.30) \triangleleft A200(0.26) \diamondsuit Neat$		(%)	(nm)	(%)	(nm)	(%)	(nm)	
E-A200(0.20)	-55.5 <u>-</u> 0.4	10.7 - 0.5	0.1745	14.0 <u> </u>	8.0 <u>-</u> 0.0	0.90 <u>-</u> 0.04	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A200(0.15)	1.05 ± 0.35	0.13	11.25	1.19	3.26	0.29	
E-A200(0.30)	-35.7±1.0	11.5±0.6	0.1672	14.6 ± 1.6	9.6±1.0	1.09 ± 0.05	255 260 265 270 275 280 T (K)	A200(0.21)	2.65±0.54	0.22	24.85	1.62	3.55	0.19	
E-A380(0.30)	-36.5±0.4	11.2 ± 0.4	0.1454	23.6±2.5	16.8±1.3	0.99 ± 0.07	Figure 5 . Normalized total dielectric strength of segmental and	A200(0.26)	7.91 ± 1.94	0.48	23.39	1.14	5.42	0.22	
E-R974(0.30)	-30.1±0.5	12.3±0.3	0.1655	11.9 ± 0.6	6.4±0.4	0.94 ± 0.03	Arrhenius-like interfacial processes, $(\Delta \varepsilon_{\alpha} + \Delta \varepsilon_{rs})/(1-\phi)$, at different temperature T for NBR and its compounds	A200(0.30)	11.45 ± 2.63	0.55	28.75	1.1	6.03	0.2	
NBR	-35.1±0.6	9.1±0.5	0.494	-	-	1.18±0.09	$(\Delta \varepsilon_{\alpha} + \Delta \varepsilon_{rs})/(1 - \varphi)$ decreases markedly with increasing A200 loading in	A380(0.30)	18.00 ± 4.42	0.44	0	0	22.92	0.45	
The conterw _{eg} is the α	nt of glassy fra content of glas e of cooperativ	ction is estima sy fraction in f vity rearranger	ated by w _g = iller gels nent region	1-∆C _p /[(1-w) s	∆C _{p,NBR}]		compounds, which could be ascribed to the existence of a fraction of highly restricted segments. The percentage of this highly restricted fraction is estimated according to $w_{\rm hrs}=1-(\Delta\varepsilon_{\alpha}+\Delta\varepsilon_{\rm rs})/[\Delta\varepsilon_{\alpha,\rm NBR}(1-\varphi)]-w_{\rm g}.$	R974(0.30)	6.3±1.2	0.37	0	0	4.33	0.24	

Figure 4. (a) Dielectric loss ε'' as a function of frequency f for neat NBR and filler gels at 0 °C, and (b) normalized dielectric loss vs normalized frequency. (c) relaxation times of bulky segmental relaxation and Arrhenius-like interfacial phase as a function of reciprocal temperature 1/T. In (a), the black line, red curve and dash red curve represent the contribution of dc conduction, restricted layer and bulky layer, respectively. In (c), the lines and curves are drawn according to VFT and Arrhenius equations, respectively.

3. Segmental Dynamics: Highly Restricted Fraction

	10 I															
$(a^{+}\Delta \varepsilon_{ m ARF})/(1-\phi)$	8		$\diamond \Box \diamond \Box$	$\diamond \qquad \bigcirc \qquad \diamond \\ \diamond \qquad \diamond \qquad \diamond \\ \diamond \qquad \diamond \qquad \diamond \qquad \diamond \\ \diamond \qquad \diamond \qquad$									$\triangleleft \Box \diamondsuit$			
(∆8	4	-		R9 A3 A2	974(0 380(0 200(0	.30) .30) .30)	♦	A2 A2 A2	00(0. 00(0. 00(0.	26) 21) 15)	\$	Nea	ıt			
	25	55		26	50		265		27	70		275		28	0	
	N I -			:_	ل ام		[:	/ (K)	:	L	~ ~+		ſ		
gure 5.	INC	ori	mal	lize	ατ	0ta	ai di	eie	ectr	IC S	τre	ngτ	n o	T SE	egme	enta
rrheniu	s-li	ke	ein	ter	tac	ial	pro	ces	sse	s, (/	$\Delta \varepsilon_{\alpha}$	+∆≀	E _{rs})/	/(1-	<i>φ</i>), a	it d
emperat	cure	e	T fo	or N	NBF	Rar	nd i	ts c	on	ро	und	ds				
	•	\ <i>\ \</i>	4							.11	•.			•	A /	200

	(ºC)	(ºC)	(J/g/K)	(%)	(%)	(nm)			MDSC		BDS			
E-A200(0.15)	-30.4 ± 0.8	12.7+0.9	0.1255	10.5 ± 0.6	1.7+0.1	0.98+0.03			Glassy layer		HRF layer		ARF layer	
E-A200(0.21)	-33.9±0.8	12.4 ± 1.0	0.1454	11.1±0.7	3.5±0.2	0.87 ± 0.02	$^{4V}3V + ^{3}V$	Compounds	Content w _g	Thickness D _g	Content W _{HRF}	Thickness D _{HRF}	Content W _{ARF}	Thickness D _{ARF}
F-A200(0.26)	-353+04	10.7 ± 0.5	0 1749	148+12	80+06	096+004	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(%)	(nm)	(%)	(nm)	(%)	(nm)
2 / 200(0120)	<u> </u>	10.7 - 0.3	0.17 13	1 1.0 _ 1.2	0.0 - 0.0	0.00 - 0.01	\triangle A200(0.30) \triangle A200(0.15)	A200(0.15)	1.05 ± 0.35	0.13	11.25	1.19	3.26	0.29
E-A200(0.30)	-35.7±1.0	11.5 ± 0.6	0.1672	14.6±1.6	9.6±1.0	1.09 ± 0.05	255 260 265 270 275 280 T (K)	A200(0.21)	2.65±0.54	0.22	24.85	1.62	3.55	0.19
E-A380(0.30)	-36.5 ± 0.4	11.2 ± 0.4	0.1454	23.6 ± 2.5	16.8 ± 1.3	0.99 ± 0.07	Figure 5. Normalized total dielectric strength of segmental and	A200(0.26)	7.91+1.94	0.48	23.39	1.14	5.42	0.22
E-R974(0.30)	-30.1±0.5	12.3±0.3	0.1655	11.9±0.6	6.4±0.4	0.94 ± 0.03	Arrhenius-like interfacial processes, $(\Delta \varepsilon_{\alpha} + \Delta \varepsilon_{rs})/(1-\varphi)$, at different temperature T for NBR and its compounds	A200(0.30)	11.45±2.63	0.55	28.75	1.1	6.03	0.2
NBR	-35.1 ± 0.6	9.1 ± 0.5	0.494	-	-	1.18 ± 0.09	$(\Delta \varepsilon_{\alpha} + \Delta \varepsilon_{rs})/(1-\varphi)$ decreases markedly with increasing A200 loading in	A380(0.30)	18.00 ± 4.42	0.44	0	0	22.92	0.45
					_		compounds, which could be ascribed to the existence of a fraction of highly restricted segments.	R974(0.30)	6.3±1.2	0.37	0	0	4.33	0.24
The conter w_{eg} is the c ξ is the size	nt of glassy fra content of glas e of cooperativ	ction is estima sy fraction in fi vity rearrangen	ited by w _g = Iler gels hent region	1-∆C _p /[(1-w) s	$\Delta C_{p,NBR}$]		The percentage of this highly restricted fraction is estimated according to $w_{hrs}=1-(\Delta \varepsilon_{\alpha}+\Delta \varepsilon_{rs})/[\Delta \varepsilon_{\alpha,NBR}(1-\varphi)]-w_{g}$.							

Conclusions

1. The addition of fillers improves dynamics heterogeneity in nanocomposites.

2. The segments around naonoparticle surface display a gridient mobility from glassy to bulklike. The interfacial structrue depends on filler surface chemistry and specific surface area.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (51573157, 51373149 and

51333004), the National Natural Science Foundation of Zhejiang Province (Grant No. R14E030003) and the Key

Technology Program of Guizhou Province (2013-6016).

References

[1] Füllbrandt, M. *Macromolecules* 2013, 46, 4626–4632 [2] Adam, P. *Macromolecules* 2014, 47, 1837–1843 [3] Christine, G. *Macromolecules* 2010, 43, 4968-4977 [4] Sung, A. K. *Macromolecules* 2015, 48, 6280-6293