

A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable PSCs

Zhongqiang Zhang (11329024), Shuixing Li, Wenqing Liu, Minmin Shi*, Hongzheng Chen*(minminshi@zju.edu.cn, hzchen@zju.edu.cn) MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

Abstract:

Recently, the exploration of non-fullerene electron acceptors have gained considerable attention and we report herein the design of a new non-fullerene acceptor, $SF(DPPB)_4$, which shows a cross-shaped molecular geometry to help suppress strong intermolecular aggregation. In addition, the energy levels of $SF(DPPB)_4$ match well with those of P3HT, which not only allows achievement of efficient exciton dissociation, but also ensures high V_{oc} (1.14 V) and efficiency (5.16%) in P3HT:SF(DPPB)₄ PSCs. Moreover, the devices show excellent thermal stability. The abovementioned results demonstrate that the new design strategy of employing a high-performance non-fullerene acceptor has promising practical applications.

Fig. 1 (a) Chemical structure of $SF(DPPB)_4$; (b) ground-state geometry of $SF(DPPB)_4$ calculated by DFT method; (c) UV-vis absorption spectra of P3HT film, SF(DPPB)₄ solution and film, and P3HT:SF(DPPB)₄ (2:1, by wt.) blended film; (d) cyclic voltammogram for SF(DPPB)₄ in dichloromethane solution.

Fig. 3 (a) 2D GIWAXS images of P3HT, SF(DPPB)₄ and 2:1 P3HT:SF(DPPB)₄ thin films with or without the thermal annealing at 120 °C for 10 min; (b) intensity profiles along q_z axis of P3HT, $SF(DPPB)_4$ and 2:1 P3HT:SF(DPPB)_4 thin films; (c) corresponding intensity profiles along q_r axis.

Fig. 4 (a) Optical microscopy images showing morphological stability of P3HT:PC₆₁BM (1:0.8, by wt.) and P3HT:SF(DPPB)₄ (2:1, by wt.) blended films after thermal treatment at 150 °C for various time; (b) graph showing the stability of the PCEs for the devices based on P3HT:SF(DPPB)₄ (2:1, by wt.) and P3HT:PC₆₁BM (1:0.8, by wt.) blended films after thermal treatment at 150 °C for various time.

Table 1	The photovoltaic	performances	of the PSCs based	on P3HT:SF(DPPB)
---------	------------------	--------------	-------------------	------------------

D:A (w/w)	V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF	PCE (%)
P3HT:SF(DPPB) ₄ (2:1) ^a	1.20	1.91	0.28	0.63 (0.60) ^d
P3HT:SF(DPPB) ₄ (1:1) ^b	1.13	5.78	0.57	3.70 (3.57) ^d
P3HT:SF(DPPB) ₄ (2:1) ^b	1.14	8.29	0.55	5.16 (5.10) ^d
P3HT:SF(DPPB) ₄ (3:1) ^b	1.13	7.13	0.46	3.68 (3.55) ^d
P3HT:PC ₆₁ BM (1:0.8) ^c	0.62	8.27	0.62	3.18 (3.14) ^d

Fig. 2 (a) Energy levels of P3HT, SF(DPPB)₄ and PC₆₁BM; (b) the diagram of device structure; (c) J-V curves of PSCs with the structure of ITO/PEDOT:PSS/P3HT:SF(DPPB)₄/PFN/AI; (d) EQE spectra of P3HT:SF(DPPB)₄ based PSCs.

500

Wavelength (nm)

400

600

700

0.4 0.6 0.8 1.0 1.2 1.4

Voltage (V)

^a As-cast. ^b Annealed at 120 °C for 10 min. ^c Annealed at 170 °C for 10 min. ^d The values in the parentheses are the average PCEs from 10 devices.

Conclusions

In summary, a spirobifluorene core based non-fullerene electron acceptor, SF(DPPB)₄, was designed and synthesized. SF(DPPB)₄ possesses a cruciform molecular configuration, which assures fine phase separation in the active layer of corresponding PSCs. In addition, SF(DPPB)₄ exhibits appropriate absorption bands and matching energy levels for P3HT. Owing to the good morphology and an outstandingly high V_{oc} of 1.14 V, the PSCs based on the P3HT:SF(DPPB)_4 blended films provided the best PCE of 5.16%. To the best of our knowledge, this PCE is one of the highest values reported in the literature to date for P3HT-based fullerene-free PSCs. The P3HT:SF(DPPB)₄ based devices also show excellent thermal stability upon thermal treatment at 150 °C for up to 3 h, demonstrating that SF(DPPB)₄ is a promising non-fullerene acceptor for future practical application of PSCs.

Acknowledgement

0.2

0.0

National Natural Science Foundation of China (Nos. 21474088, 51261130582, 91233114, 51561145001) and Zhejiang Province Natural Science Foundation (No. LR13E030001). The work was also partly supported by 973 program (No. 2014CB643503).

References

1. S. Li, W. Liu, M. Shi, J. Mai, T.-K. Lau, J.-H. Wan, X. Lu, C.-Z. Li and H. Chen, *Energy Environ. Sci.*, 2016, **9**, 604-610. 2. S. Li, J. Yan, C.-Z. Li, F. Liu, M. Shi, H. Chen and Thomas P. Russell, J. Mater. *Chem. A*, 2016, **4**, 3777-3783.