Colloquium on Polymer Science and Molecular Engineering Zhejiang University and the University of Chicago 12-16 April 2017

Sulfated Polyelectrolyte Complex Nanoparticles Structured Nanoflitration Membranes for Dye Desalination

Chun-Chun Ye(21429002), Quan-Fu An*

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

Abstract:

- > Polysaccharide nanofiltration membrane with traditional modification suffers from poor water permeability for its tight packing of polymeric chains.
- > A novel membrane building block based on sulfated polyelectrolyte complex nanoparticles (SPEC NPs) is developed using chitosan and dextran sulfate sodium.
- > Special aggregation structure combined with hydrophilic sulfate groups effectively attenuates packing density of polymeric chain and increases free volume.
- > As-prepared membranes (SPECMs) feature prominent perm-selectivity and antifouling property in practical dye desalination for a long-term process.

Introduction

(a) RMS=4.45 \pm 0.41nm

(b)

(c)

Fig. 3. AFM/FESEM surface micrographs (scale bar: 1μm) of (a)/(b) M-4; Cross-section of (c) M-4 (scale bar: 500nm).

Fig. 4. (a) ATR-FTIR spectra of SPEC, M-0, M-1, M-4 and FTIR spectrum of PEC; (b) Water contact angle of M-0 and SPECMs; (c) Zeta potential varies with pH of M-0 and SPECMs tested with 1.0 mmol L⁻¹ KCl aqueous solution at 25 °C.

Characterizations of SPEC NPs and SPECMs

Table 1 Compositions of PEC and their SPECs determined by XPS.

Sample	Feed ratio (mol%) (sulfate agent : CS)	S (At.%)	N (At.%)	S : N	DC ª (mol%)	DS ^b (mol%)	Membrane
PEC		2.97	6.60	0.45	45		—
SPEC-1	1.0	3.95	6.27	0.63	45	18	M-1
SPEC-2	2.0	4.46	5.95	0.75	45	30	M-2
SPEC-3	3.0	5.02	5.84	0.86	45	41	M-3
SPEC-4	3.5	5.26	5.72	0.92	45	47	M-4
SPEC-5	4.0	5.27	5.67	0.93	45	48	M-5

^{*a*} DC: Degree of complexation, ^{*b*} DS: Degree of sulfation

Fig. 5. (a) NF performance of M-0 and SPECMs tested with 1.0 g L⁻¹ Na₂SO₄ aqueous solution and (b) organic dye and different inorganic electrolytes (pH=6.5) at 25 °C under 0.6 MPa.

> Dye desalination and antifouling property

Fig. 2. (a) FESEM micrographs of SPEC nanoparticles aqueous dispersions (scale bar: 2μ m) and (b) magnified image in (a) (scale bar: 500 nm), solvent was dried on silcon wafers at 30 °C (0.1 g L⁻¹).

Fig. 6. (a) Time (h) **Fig. 6.** (a) Time-dependent flux and rejection of 1.0 g L⁻¹ NaCl and 0.1 g L⁻¹ MYB solution of M-4

(inset: decolorization effect of M-4) and (b) Flux evolution of M-4 and M-0 tested with 0.1 g L⁻¹ dye solution (pH=6.5) at 25 °C under 0.6 MPa (inset: FDR and FRR of M-4 and M-0).

Conclusions

- > The novel NF membrane building block SPEC NPs anchored with tunable sulfated groups is fabricated from chitosan and dextran sulfate sodium.
- > SPECNPs reduce transfer resistance and promote transport of water molecules, thus render SPECMs with remarkable elevation in flux and antifouling property.
- > The selectivity for NaCl/Na₂SO₄ and NaCl/methyl blue dye are as high as 13.1 and 850, exhibiting good separation performance in a long-term operation.

Acknowledgement

This research was financially supported by National Basic Research Program of China (No. 2015CB655303) and Zhejiang Province Natural Science Foundation(No. LR15B060001).

References

- > Q. Zhao, D. W. Lee, B. K. Ahn, et al, *Nat. Mater.* 15 (**2016**) 407-412.
- > D. Rana, T. Matsuura, Chem. Rev. 110 (2010) 2448–2471.
- C. C. Ye, F. Y. Zhao, Q. F. An, et al, Chem. Eng. J. 307 (2017) 526–536.