

Efficient Red Emission AEE-active Polyelectrolyte Constructed From Pyridinium-Modified Tetraphenylethene Chen Rui (21529051),^a Jing Zhi Sun,^{*a} Ben Zhong Tang^{*ab}

^a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China. ^bDepartment of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.

INTRODUCTION

Fluorescent polymers are promising materials for various applications, for instance, chemo/biosensors, bio-imaging and lightemitting diodes. Unfortunately, the fluorescence quantum yields of conventional fluorescent polymers decrease dramatically in their condensed phase or aggregates. The AIE (aggregation-induced emission) active molecules show opposite behaviors. They are nonemissive or emit faintly in solutions, while highly emissive in aggregates or solid states, which blaze a wide road for various practical applications. By introducing AIE-active units into polymers, the derived polymeric materials can often be bestowed with aggregation enhanced emission (AEE) property. But AEE-active and polyelectrolyte polymers have never been reported. Here we present an efficient red emission and AEE-active polyelectrolyte constructed from pyridinium-modified tetraphenylethene, a typical AIE-gen.^[1]

RESULTS AND DISCUSSION

polyelectrolyte 1. Molecular structures of the AEE-active containing pyridinium-modified tetraphenylethene moieties

Normalized

Intensity

(a.u.)

Wavelength (nm)

Fig. 2. Fluorescence (FL) spectra of TPETBB in DMSO/water mixtures with different water fractions (f_w). Inserts: photographs of TPETBB in DMSO/water mixtures with $f_w = 0$ (left) and $f_w = 40\%$ (right) under 365 nm UV light.

2. Red-emission in solution, large **Stokes shift, and AEE behavior**

3. Efficient emission in solids and robustness to external stimulus (such as pH, solvent polarity, mechanical force)

Wavelength (nm) Fig. 1. UV-vis absorption (black line) and fluorescence (FL) spectra (red line) of TPETBB in DMSO. Concentration of TPE unit = $10 \mu M$. Inset: photograph of the emission from TPETBB in DMSO under 365 nm UV light.

Fig. 3. (A) FL spectra of (Z)-TPE-DPy (green, $\lambda_{ex} = 400$ nm) and TPETBB (red, $\lambda_{ex} = 550$ nm) in solid state. Inserts: emission photographs of (Z)-TPE-DPy and TPETBB powders under 365 nm UV light. (B) FL spectra of TPETBB in Britton-Robinson Buffer Solutions (with 10% DMSO) of different pH values: from 2.0 to 12.0.

SUMMARY

We have successfully synthesized an AEE-active polyelectrolyte constructed from Pyridinium-Modified Tetraphenylethene. Its efficient red emission and good solubility in DMSO/water system make it promising in bio-imaging and bio-sensing.

ACKNOWLEDGMENTS

This work was financially supported by "973" project No. 2013CB834704.

References

[1] T. Hu, J. Z. Sun, and B. Z. Tang, *et al. Chem. Commun.*, 2015, **51**, 8849.