

Zhenang

4-(2-Pyridylazo)-resorcinol Functionalized Thermo-Sensitive Ionic Microgels for Optical Detection of Heavy Metal Ions at Nanomolar Level

<u>Xianjing Zhou^a</u>, Jingjing Nie^b, and Binyang Du^{a*}

^a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China ^b Department of Chemistry, Zhejiang University, Hangzhou 310027, China

BACKGROUND

- Excessive levels of heavy metal ions can cause great damage to human health and environment.
- Microgels are polymeric colloidal particles with three-dimensional cross-linked networks that are swollen in good solvents.
- In this work, novel functional microgels were designed and synthesized for fast colorimetric detection of various heavy metal ions, namely Cu²⁺, Pb²⁺, Mn²⁺, Zn²⁺, and Ni²⁺, in aqueous solution at nanomolar level.

METHOD

• Functional thermo-sensitive ionic microgels were synthesized via a one-pot quaternization reaction during the surfactant free emulsion copolymerization (SFEP) of *N*-isopropylacrylamide (NIPAm) and 1-vinylimidazole (VIM) with the presence of 1, 6-dibromohexane and hydrophobic indictor, i.e. 4-(2-pyridylazo)-resorcinol (PAR).

RESULTS AND DISCUSSION

1. Morphology and Thermo-sensitive Behavior of Microgels

Figure 1. (a) The representative TEM image of PAR-MG microgels and (b) the hydrodynamic radius of PAR-MG microgels measured by DLS as a function of measuring temperature. The inset showed the size distribution of PAR-MG microgels at 25 °C.

Figure 3. (a) A_{510nm}/A_{404nm} ratios of PAR-MG microgels at pH 3 after sequential addition of various metal ions. The adding sequence of metal ions was Ba²⁺, Cr²⁺, Al³⁺, Mn²⁺, Pb²⁺, Fe³⁺, Co²⁺, Zn²⁺, Ni²⁺, K⁺, Na⁺, Ca²⁺, Mg²⁺, and Cu²⁺. The concentrations of PAR-MG microgels and each metal ion were 0.125 mg/mL and 5 μ M, respectively. (b) Interference studies of different metal ions on detection ability of PAR-MG microgels for Cu²⁺ at pH 3. The concentration of Cu²⁺ was 5 μ M.

4. Detection Limits

$$D_L = \frac{kS_b}{m}$$

U.S.EPA

Detection Limits

Figure 2. (a) The intensity evolution of UV absorption peak at 510 nm for PAR-MG microgel suspensions at pH =7 with the presence of various heavy metal ions (5 μ M) as a function of time. (b) The UV-vis adsorption spectra of PAR-MG microgel suspensions with the presence of different heavy metal ions (5 μ M) at pH = 11. (c) The digital photos of PAR-MG microgel suspensions with the presence of 5 μ M various heavy metal ions at pH = 11. The concentration of PAR-MG microgels was 0.125 mg/mL.

CONCLUSIONS

• The PAR-MG could optically detect trace heavy metal ions in aqueous

Cu ²⁺ (pH = 3)	38 nM	Cu ²⁺	20 μM
Cu ²⁺ (pH = 7)	12 nM		
Mn ²⁺ (pH = 11)	14 nM	Mn ²⁺	909 nM (50 μg/L)
Zn ²⁺ (pH = 11)	20 nM	Zn ²⁺	76 μM (5 mg/L)
Ni ²⁺ (pH = 11)	21 nM	Ni ²⁺	680 nM (40 μg/L)
Pb ²⁺ (pH = 11)	79 nM	Pb ²⁺	72 nM (15 μg/L)

solutions, especially exhibit high sensitivity and excellent selectivity toward Cu^{2+} over other metal ions under strongly acidic.

- The limits of colorimetric detection for Cu²⁺, Pb²⁺, Mn²⁺, Zn²⁺, and Ni² were lower than (or close to) the U. S. EPA standard for the safety limits of these heavy metal ions in drinking water.
- The PAR-MG also exhibited characteristic color with the presence of various trace heavy metal ions, which could be visually distinguished by naked eyes.

*The authors thank the National Natural Science Foundation of China (Nos. 21274129 and 21322406) for financial supports. Email: <u>duby@zju.edu.cn</u>