
Abstract: By creating an effective -orbital hybridization between the fullerene cage and the aromatic anchor (addend), the 

azafulleroid interfacial modifiers exhibit enhanced electronic coupling to the underneath metal oxides. High power conversion 
efficiency of 10.3% can be achieved in organic solar cells using open-cage PCBM modified zinc oxide layer. 
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Conclusions: In conclusion, we have designed new aza[60]fulleroid derivatives as interfacial modifiers for engineering the contact between the organic BHJ 

and ZnO. By facilitating effective p-conjugation between fullerene and aromatic addends, the electronic coupling between fullerene and the underneath metal 
oxides (through conjugated anchors) could be enhanced. As a result, new interfacial modifiers with varied functionalities and energetics are found not only to be 
able to shift the WF of ZnO, but also mediate the electron extraction from BHJ to metal oxide ETL. The molecular design, synthesis, and experimental studies 
reported here provide valuable insights for designing new generation of functional materials for highly efficient organic electronics. 

The heterojunction between organic and inorganic semiconductor is one of 
the critical interfaces in the hybrid thin film electronic devices.[1-2] Across 
such interfaces with composition-distinct materials, the energy level 
alignment and charge extraction (or injection) need to be optimized in order 
to achieve good device performance. In fact, charge trapping and 
recombination due to the presence of physical and chemical defects often 
occur at these interfaces to deteriorate device performance. Therefore, 
approaches of tailoring these interfaces have been vigorously explored for 
device fabrication. Efficient charge extraction (or injection) from a 
semiconductor to a metal oxide electron transport layer (ETL) requires 
effective electronic coupling and minimized contact resistance between 
them that can be achieved through proper interfacial modifications. 
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Figure 1. Schematic illustration of electron transport from fullerene 
interfacial modifier to ZnO (top), the modeled HOMO/LUMO (middle), and 
the structure difference of [5,6]-open fullerene and [6,6]-closed fullerene. 
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Figure 2. UV-vis absorption and CV curves of different fullerene, and 
Photoemission spectroscopy of ITO/ZnO with and without modification. 

Device Voc 

(V) 

Jsc 

(mA/cm2) 

FF PCE a 

(%) 

W/O 0.81 (0.800.01) 17.10 (17.040.05) 0.69 (0.680.02) 9.51 (9.26) 

Open-C60 0.72 (0.710.01) 17.41 (17.360.06) 0.66 (0.640.02) 8.26 (7.99) 

Open-PCBM 0.81(0.800.01) 17.32 (17.280.05) 0.74 (0.720.02) 10.30 (9.95) 

Close-C60 0.77 (0.760.01) 17.06 (17.020.06) 0.65 (0.640.01) 8.58 (8.39) 

 

• PIDTT-DFBT:PC71BM • PTB 7-Th:PC71BM 

Table 1. Photovoltaic properties of inverted devices using PTB7-Th:PC71BM BHJ 
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