

Different amino acid modified chitosan nanoparticles for chelating Cu²⁺ to suppress the cytotoxicity caused by CuO nanoparticles

Yixian Zhang, Yiran Xu, Xiangyi Xi, Changyou Gao*

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China <u>cygao@mail.hz.zj.cn</u>

The adverse effects of metal oxide nanoparticles to human beings and environment have received extensive attention recently. It is urgently required to develop a simple and effective method to suppress the toxicity of metal-based nanomaterials. In this study, chitosan nanoparticles (CS NPs) were prepared as a chelation agent and were modified with different amino acid, that was, lysine (named as Ly), glutamic acid (named as Glu), and pristine CS NPs dealed with NaBH₄ (named as CS), to promote the chelating efficiency.

Figure 1. Schematic illustration to show the process of suppressing the cytotoxicity. After the CuO NPs are uptaken and Cu²⁺ is released, they will be chelated by the CS NPs. Finally, the cytotoxicity of CuO NPs is reduced.

Figure 5. Relative viability of three kinds of cells being incubated with 100 μ g/mL of different chitosan nanoparticles and 25 μ g/mL CuO nanoparticle for 24 h and 72 h, respectively.

Figure 2. Representative SEM images of chitosan nanoparticles(a) modified with lysine, (b) modified with glutamic acid and (c) dealed with NaBH₄.

Figure 3. Representative TEM images of chitosan nanoparticles (a) modified with lysine, (b) modified with glutamic acid and (c) dealed with NaBH₄.

Figure 6. Intracellular ROS level of (a) HepG2 cells, (b) A549 cells, and (c) RAW264.7 cells after being treated with 20 μ g/mL CuO NPs in the absence and presence of different chitosan particles for 24 h, respectively. Untreated cells and the cells treated with 200 μ M H₂O₂ for 10 min were used as negative and positive controls, respectively..

Conclusion

Uniform and well-dispersed chitosan nanoparticles were prepared by emulsion crosslinking method. Their chelating efficiency towards Cu²⁺ were improved after modified with amino acid. Besides, cytotoxicity and the ROS level brought by CuO nanoparticles were suppressed after adding CS NPs, especially for these modified with lysine.

Figure 4. Adsorption capacity of Cu^{2+} on chitosan nanoparticles with lysine (Ly), Glutamic acid (Glu) and dealed NaBH₄ (CS).

Acknowledgement

Financially supported by the Natural Science Foundation of China (51120135001) and Zhejiang Provincial Natural Science Foundation of China (LR16E030001). Reference

[1] Liu H, Chen B , Mao Z , Gao C. Journal of Applied Polymer Science, Vol. 106, 4248–4256 (2007)
[2] Zhang W , Jiang P, Mao Z, Gao C. Nanoscale, Vol. 8, 9572-9582 (2016)