Thermo-Responsive Hemoglobin-Polymer Conjugates

with Oxygen-carrying Capacity

Shasha Wang, Fang Yuan, Kehua Tu, Li-Qun Wang*

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P.R. China.

Introduction

The potential toxicity towards human kidneys of hemoglobin (Hb), when used directly, has severely limited its application as a red blood cell substitute and in cancer treatments. In this work, a novel hemoglobin–polymer conjugate was prepared by a reaction between the lysine amino groups of Hb and the carboxyl groups of a copolymer, poly(N-isopropylacrylamide) grafted carboxylated dextran (HOOC-Dex-g-PNIPAAm), which was synthesized by single electron transfer living radical polymerization (SET-LRP) and post-carboxylation. Both the thermo-responsive nature of PNIPAAM and the oxygen-binding capacity of Hb were conferred to the conjugate. Furthermore, we also demonstrated that this conjugate had a unique property to improve the stability of O₂–Hb above LCST, probably due to the thermo-sensitivity of grafted PNIPAAm chains. And the stability of O₂–Hb in the conjugates would increase with the number of PNIPAAm chains.

Synthesis & Characterization

Scheme 1. Synthesis of the conjugate of Hb-Dex-Cl_x-g-PNIPAAm

Fig 1. FTIR spectra of Dex, Dex-Cl and Dex-Cl-g-PNIPAAM

Fig 2. ¹H NMR spectra of reaction products in D₂O at 25 °C

Results

Fig 3. Thermo-responsive properties: (a) LCST obtained by DLS; (b) CMC

Fig 4. TEM images of (a)
Dex-g-PNIPAAm and (b)
HOOC-Dex-g-PNIPAAm

Fig 5. Gas-bindig capacity of Hb-Dex-g-PNIPAAM

Table 1. Stability of the conjugates of Hb-Dex-Cl_x-g-PNIPAAm with different number of PNIPAAm chains

Hb-polymer conjugates –	t _{1/2} (min)	
	25°C	37°C
Hb-Dex-Cl ₁₀ -g-PNIPAAm	55	21
Hb-Dex-Cl ₂₂ -g-PNIPAAm	90	77
Hb-Dex-Cl ₃₀ -g-PNIPAAm	119	107

Conclusions

The conjugate of Hb-Dex-g-PNIPAAm was synthesized and endowed with both the thermo-responsive nature of PNIPA-Am and the oxygen-binding capacity of Hb.

The conjugate of Hb-Dex-g-PNIPAAm could improve the stability of O_2 -Hb which increased with the number of PNIPAAm chains, probably due to the thermo-sensitivity of PNIPAAm chains.

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (21274124)