

Highly Efficient One-pot/one-step Synthesis of Multiblock Copolymers from Three-**Component Polymerization of Carbon Dioxide, Epoxide and Lactone**

11329017 李洋,

张兴宏*

MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

A one-pot/one-step synthesis of a new CO₂-based multiblock copolymer (MBC) without tapering from cyclohexene oxide (CHO), CO₂ and ε-caprolactone (ε-CL) via cross chain exchange reaction (CCER) that bridged two independent chain propagations catalyzed by two properly selected catalysts (Figure 1) simultaneously.

Figure 1. Proposed cross chain exchange polymerization of CO₂, CHO and ε-CL by using two selected catalysts: 1, Zn-Co(III) DMCC with Zn-OH group (Figure 2); and 2, stannous octoate [Sn(Oct)₂].

un	[OH]/[ε	M _n /PDI ^b	Composition(%) ^c			N ^d	Conv.% ^e
	-CL]	kg/mol	C	Α	В		CHO/ε-
							CL
	-	29.9/1.8	-	81.0	19.0	-	99 / -
5	1:150	22.7/1.7	100	-	-	-	- / 84
	1:40	9.7/2.0	52.1	38.1	9.9	9	97 / 94
	1:150	18.7/1.8	49.5	46.6	3.9	7	99 / 95
	0	35.2/1.9	49.2	47.5	3.4	5	98 / 96
1	1:125	14.9/3.7	50.2	40.4	9.4	10	99 / 92

Table 1. Results of CHO/CO₂ copolymerization, ε -CL ROP and CHO/CO₂/ ϵ -CL terpolymerization^{.a}.

Figure 4. GPC curves of the purified PCHC (run-1), PCL (run-2), and the resultant terpolymers from runs 3-5 in Table 1.

Figure 5. The conversion of CHO, ε -CL and Mn of the resultant product versus polymerization time. [Sn(Oct)₂]: [Bzl-OH]: [ϵ -CL] = 0.5 :1: 40; 101°C \pm 2°C (from ca.20-125min), 4.0MPa.

Zhejiang University

A series of one-pot polymerizations with mixed monomers of CHO, CO₂ and ϵ -CL in the presence of 1 and 2 were carried out (Table 1). GPC results showed that the resultant MBCs had single elution curves. (Figure 4) with PDIs of 1.8-2.0. The number-average molecular weights (Mns) increased from 9.7 to 35.2 kg/mol with decreasing the [Bzl-OH]/ [E-CL] molar ratios from 1:40 to 0.

The plots of Figure 5 shows that the conversion of CHO and ϵ -CL (and Mn) increased with increasing the reaction time. Mn was also increased with the conversion of CHO and ϵ -CL in a nearly linear manner.

^aReaction conditions of runs 3-5: 100°C, 4.0 MPa; 35.0mg of Zn-Co(III) DMCC, [OH]: $[Sn(Oct)_2] = 2:1, 4.0h, 30.0mL$ CHO, 30.0mL ϵ -CL, 20.0mL THF, [OH] was benzyl alcohol (Bzl-OH) for ε -CL ROP.

Figure 3. (A): curves 1, 2 and 3 are ¹H NMR spectrum of PCL, PCHC and the resultant terpolymer of run-3 in Table 1; (B) ¹H-¹³C HSQC spectrum of the terpolymer of run-3 in Table 1.

Figure 6. (A) Images of MBCs synthesized under different conditions; (B) DSC curves of MBCs from runs 3-5 (curves 1-3) and PCL/PCHC blend (curve 4, Mn: 26.4kg/mol), T_os of MBCs were not clearly observed because the melted PCL block could dissolve PCHC block; (C) SAXS results: onedimensional correlation functions for run-5 MBC in Table 1 (solid line) and PCL/PCHC blend (dash line). (D) Stress-strain curves of run-5 MBC, PCL/PCHC blend and PCHC (Mn: 37.4kg/mol) at room temperature and 10mm/min, * Denotes failure point.

The multiblock structure of MBCs was also evidenced by the crystallization behavior from the differential scanning calorimetry (DSC) result. Due to the multiblock structure, the run-5 MBC showed improved elongation at break of 22.8% relative to those of PCHC (3.3%) and PCHC/PCL blend (1.8%) (Figure 6D), which meant that run-5 MBC was tougher than the pure PCHC and PCHC/PCL blend.

Conclusions

In summary, we described a convenient method to synthesize MBCs with high efficiency from a one-pot/one-step polymerization of CO₂, CHO and ε -CL by bridging two independent chain propagations via CCER in one system. This reaction is also of significance because it produced multiblock copolymers without tapering by partially using renewable CO₂. Such MBCs with improved mechanical properties have a CO₂ uptake up to 15 mol% when [CHO]/[ϵ -CL] feeding ratio was 1.0. The ongoing work will be directed towards MBCs with tunable properties by precise kinetic control.

Acknowledgement

We are grateful for financial support by the National Science Foundation of the People's **Republic of China (No. 21474083 and 21274123).**

References

(1) Yang Li, Jiali Hong, Renjian Wei, Yingying Zhang, Zaizai Tong, Xinghong Zhang*, Binyang Du, Junting Xu, Zhiqiang Fan, Highly Efficient One-pot/one-step Synthesis of Multiblock Copolymers from Three-Component Polymerization of Carbon Dioxide, Epoxide and Lactone. (Submitted)