

Sonochemical Transformation of Epoxy-amine Thermoset into Soluble and Reusable Polymers

11229010 闵玉勤, 黄姝赟, 王宇翔, 张之钧, 杜滨阳, 张兴宏*, 范志强

MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

Introduction: The degradation and reuse of epoxy thermosets have significant impact on the environments. We report that an epoxy-amine thermoset embedded with Diels–Alder (DA) bonds was transformed into soluble polymers via sonochemistry under mild temperature (ca. 20°C) for the first time. Sonication could effectively induce the position-oriented cleavage of DA bonds (i.e., retro-DA) of the fully swelled epoxy thermoset in dimethyl sulfoxide (DMSO), leading to the soluble polymers. Of importance, such sonochemical process could be regulated on demand via switching on-and-off of the sonication. The obtained soluble polymers could be re-cured to form epoxy-amine thermosets via DA reaction.

Hypothesis and Synthesis	

Zhejiang University

Scheme 1: The syntheses of 2 and 3 embedded with DA bonds, and the proposed r-DA reaction induced by ultrasound irradiation

Results

Table 1. Soluble epoxy polymers from sonochemical reaction of the epoxy thermosets in the selected solvents.

Run	Solvent	Intensity (%)	Time ^[a] (min)	Yield of soluble polymers (%) ^[b]	M _n (kg/mol) /PDI ^[c]
1	DMSO	30	25	39.8	154.5/2.2
2	DMSO	30	50	44.6	110.4/2.3
3	DMSO	30	75	78.3	76.6/2.7
4	DMSO	30	100	83.5	48.8/1.6
5	DMSO	30	125	84.1	48.3/1.7
6	DMSO	40	50	71.1	86.8/2.5
7	DMSO	50	50	77.9	82.7/2.6
8	NMP	30	75	16.9	577.1/1.5
9	DMF	30	75	3	-/-
10 ^[d]	DMSO	30	125	84.5	48.6/1.6
11 ^[d]	NMP	30	125	46.9	106.2/2.0

Figure 1. (A) DSC result of **2** (inserted image) under N_2 atmosphere (10 °C/min); (B) the powders of **2** swelled in DMSO for at least 4h; (C), the solution obtained from (B) via sonication in DMSO for 75 min (ice bath); (D), the solid polymers from (C); (E), GPC curves of the soluble polymers (runs 1-5 in Table 1); (F), the yield and M_n of the resultant soluble polymers as a function of sonication times.

Conditions: 100.0 mg **2** in 10.0 ml solvent; ice bath; sonication mode: 3s on and 3s off, and 10 min as one cycle (i.e.: 5 min sonication on per cycle), the next cycle was then started after a stop time of 2 min. The maximum ultrasonic power of the instrument was 650 W, an \emptyset 6 mm amplitude transformer was immerged into the solvent in a 25 ml vial under N₂ atmosphere. [a] the total time of the on mode of the sonicator; [b] calculated from the residual solid after sonication, centrifugation and completely dried process; [c] determined by gel permeation chromatography in DMF, 60 °C, PMMA standard; [d] the FHM/DETA thermoset (**3**).

Proposed mechanism

The partial degradation of 2 to soluble polymers is a combination of the swelling and pulling-out effect caused by ultrasound irradiation in DMSO. The effective swelling of 2 is the prerequisite for converting the cross-linked network into soluble polymers, while the strong solvent-polymer interaction could facilitate the extraction of a polymer chain from the swelled layer of the thermoset.

Figure 2. ¹H-NMR spectra (400 Hz, d_6 -DMSO): 1) the soluble polymer of run-5 in Table 1; 2), heat-degraded product of **2** at 130 °C for 30 min; 3), FDB; 4), FGE.

Application

Conclusions: We reported the first example of force-induced transformation of the epoxy thermoset into a soluble and reusable polymer via partial position-oriented cleavage of DA bonds in the thermoset in DMSO. This force-induced degradation protocol provides an unprecedented, useful and efficient way to recycle the epoxy thermosets with dynamic covalent bonds like DA groups under mild conditions.

Figure 3. DSC result of the re-cured sample (inserted chart) from the recycled epoxy polymer in DMF (cure condition: 70 °C/2 d).

References: 1, Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F., *Science* 2002, *295* (5560), 1698-1702; 2, Wiggins, K. M.; Syrett, J. A.; Haddleton, D. M.; Bielawski, C. W., *J Am Chem Soc* 2011, *133* (18), 7180-7189.

Acknowledgement: The authors are grateful for financial support by the National Science Foundation of the People's Republic of China (No.21274123 and 21474083).