CHAPTER 6

IONIC CHAIN POLYMERIZATION
BfFEE

JIANG LIMING
DEPARTMENT OF POLYMER SCIENCE
AND ENGINEERING
2014.10.



6-1 3|5 : B FREEH—IRYFIE

POLYMERIZATION lonic chain
polymerization
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Polymerization polymerization

Chain
Polymerization
: : Anionic
Radical chain polymerization
polymerization
Cationic polymerization Anionic polymerization
CH,=CHe¢Y I CH,=CH->Y
Y: an electron-releasing Y: electron-withdrawing
alkyl (R) nitrile (CN), etc.
alkoxy (OR) carboxyl (—-COR)
1,1-dialky —COOR

Y = Phenyl (-C4H.), vinyl (-CH=CH.,)
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Electron-donating substituents
increase the electron density
on the carbon-carbon double
bond and facilitate its bonding
to a cationic species.
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Electron-withdrawing
substituents facilitate the
attack of an anionic species
by decreasing the electron
density on the double bond.
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~ |+ o | The alkoxy group allows
CH,=CH-OR —> »CH,—C ™ < " CH,—C 3 delocalization of the

) | . positive charge.
:OR QR

H g .
CH,=C-CN —> wwnCH,—C: <> wwwCH,—C  Stabilization of _
I propagating carbanion
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|I|\i N:~ of the negative charge.
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FIG |. Resonance and stability of ionic propagating species 5
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Monomers for cationic polymerization

1,1-Dialkylolefins (1,1- —%¢3EMi144) CH2=C(CH3)2
1-Alkylolefines (1-F¢FLMike) CH2=CHCH(CH3)2

CH2=CHCH2CH(CH3)2
Vinyl ethers (Z & 1k) CH2=CHOR

N-Vinyl carbazole (N-Z.45ER4E)
N-Vinyl pyrrolidone (N-Z. i 3L & 4E i )
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Monomers for anionic polymerization

Acrylonitrile (AN) K G CH2=CH-CN
(Meth)acrylamide (FR 355) TR s B CH2=CH(CH3)CONH2
(Meth)acrylates (FF 3% 4 i 122 i CH2=CH(CH3)CO2R

Monomers for anionic and cationic polymerization

1,3-Dienes 1,3- ] " CH=CH-CH=CH2
Styrene (St) KL C,H.CH=CH2
a-methylstyrene o- L 2R 2 CeH,C(CH3)=CH2

Isoprene (IP) S CH=C(CH3)-CH=CH2



6-1b IBIKFRRYTER

s BA s BYAT v BY|[AT e BY# A

covalent tight ion pair solvent-separated free ion
(contact ion pair) (loose ion pair) (highly solvated)
(1) (2) (3) (4)
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A. Initiating System and Initiation

e Protonic Acids

HA ~—— H®®R — H/ ER

R’ R' The anion of the acid should
| ® .0 | not be highly nucleophilic,

H;C—-C~ A~ — H3;C—C—A otherwise it will terminate the
| | protonated olefin by covalent
R R bond formation!

H,SO,, FSO3zH, H;PO,, CCI;CO,H, HCIO,, CF3;CO,H, etc.
The polymer MW rarely exceed a few thousand!
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BF; * H0 == H®BF,0H°

Hm —> HH% (BF30H)®

AICI, + (CH3)sCCl == (CHy)sC*(AICI,)
(CH3)sC*(AICI) + CgHsCH=CH, <= (CH3)sCCH,CH(AICL)
CsHs

BENBESEENATHETEAMNII&F. B, AICLEET L
FrERATRETFES!
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The initiation process:

|+ Z2Y == v*(2) (6-1a)

I: Initiator

k. _ L
Y+(|Z)_ + M i Y|\/|+(|Z) (6-1b) ZY: Coinitiator

M: Monomer
Ma: REFIZ2) HFERERKXNMFA - EK THKKIE S TG0
, AR ER S N ] LT R s o e ZY: TR (HAD Bl E &1
fiLfa.

mE: KBTS AF. HS|EF. BRIFRME, KETEEHKF5 %
1R R H kB T M LewisER HUBS M RIS 58 T G K, L 1FE Lk FHARIER 4.

BF>AICI,>TiCl,>SnCl, SnCly | o 'T't'at'on o |
BF,>BCl,>BBr; iIsobutylene polymn--- activity order:

AICI;>AIRCL,>AIR,CI>AIR; | HCI>HOAc>CH3NO,>PhOH>H,0>
A|R2| > AIRzBr > A|R2C| CH30H>CH3COCH3
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oOF Y oenoso
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\
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indene  N-Vinylcarbazole

SERENRIES
+ (3. 4 :

Xof T AR P AR
(7T KOK)
PRGN EIER A
B, AE A 5] A6 H
FIER i LN
Bt BT FIN- 4
I J TS M S v P 2
e AR B

13



FEZIEFESRRAGFEERERNSI &5/t

IR RINEFERBIBSIEE.

8 -
= O SnCl,: 0.08 M
e L ® SnCl,: 0.12 M
o ° o
@ [
gip
- 0% ° .
o P %0
T 2r © o
o
g
0 | I | |
0 10 20 30 40
[H,0] (10%), moles/liter
FIG.2 Effect of  water

concentration on the SnCl,
initiated  polymerization of
styrene in CCl, at 25°C.

SnC|4 + Hzo

SncCl, + H,0 === SnCl; H,O
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Propagation

M)
the initiator-coinitator
complex

(oxonium salt, VI) &K
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Other Initiators l, + CH2=<|3H—> ICHz-CHI HL CH=CH
» lodine (I,) is unique among OR OR OR
the halogens in that it HI + I, == H'l3 (the initiating species)
initiates polymerization of the U J

more reactive monomers

(styrene, vinyl ether, N- a
vinylcarbazole, acenaphthylene) OO T
even in the absence of a Lewis
acid.

> Photoinitiator Y&5|%&F

acenaphthylene

+ ) hv + )
Arol*(PFg) — Arl* (PFg) + Ar-

aryldiazonium ArN,*Z- a radical cation
diaryliodium  Ar,I*Z- HY
triarylsulfonium Ar,S*Z- ¢

Z-=BF,, SbF,", PFy, etc. Arl + Y-+ H'(PFg)

an initiator-coinitiator

complex
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B. Propagation

H—CH,C(CHg); ¥ (BFsOH)™ + (CH3),C=CH,

+ _
» H— CH,C(CH3), 17 CH,C(CHg),(BF30H)

+ — kp + -
HM,* (1Z) + M HMM* (1) (6-2)
CHy
CH,=CH-CH(CHs), —» —CH,-CH-] CH c—}
CH(CH3)9

the first formed unit  the rearranged unit

3-methyl-1-butene

S8 E&—— Polymerization

proceeding by rearrangement
. ° . . O

are referred to as isomerization L 70%

polymerization. —130 100%

Temp./°C the rearranged unit
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Ferraris et al.: High resolution '*H and 3C NMR

H H
| H: shift !
CHZ:C|:H —_— WCHZ_Cl:"' 4» ‘\MM—CI:+
the first-formed (c)
4-methyl-1-pentene carbocation
¢H: shift
CH _
_— ] ° H: shift |T|+ :CHs shift s I|—I+
CH2CH2CH2 (Ij— <—WCH2CH2_C » VLN CHZCHZ_(H:_(F
I
CHs CH(CHy), CH;

(b) ©) (d)

The extent of rearrangement during cationic propagation will depend on
the relative stabilities of the propagating and rearranged carbocations and

the relative rates of propagation and rearrangement.
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[0 Chain Transfer to Monomer 15) 2 /R4% 4545

>
>
>

Mode 1.
+ _
H— CH,C(CHj3), 17 CH,C(CH3)2(BF30H) + CH,=C(CH3), —

(CH3)3C*(BF30H)” + H—t-CH,C(CHgz), J7CH,C(CH3)=CH,

+ H— CH,C(CHj3);, 47~ CH=C(CHj3),
Mode 2. .
H— CH,C(CH3)—7 CH,C(CHgz)o(BF3OH) + CH,=C(CHg),—™

H—[— CH2C(CH3)2—]ﬁ CHch(CHg)Z + CH2=C(CH3)-CH2+(BF30H)_

k
|:HMnM+(IZ) M — M., + HMY(1Z)" (6-3) ]

MAZHEAMS, DEKEEBREREZEN S BHI L.
NFEEALIE, BABE TSI AREHEZSAE M.
] AR R R Cy = kyu/k,. Tempd, Cy b, MW T
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[0 Spontaneous Termination ] & £ 1k

+ _
H— CH,C(CHj3), 7 CH,C(CHj3)2(BF30H) —

H_[' CH2C(CH3)2_]ﬁ CH2C(CH3):CH2 + BF:): Hzo

K
{HMnW(IZ)‘i» Mua + H'(1Z)  (6-4) }

> BERZILE: BREFHAEEHSBEEZIE, B A A b A
FIZEEY), BAERSIRFR-IS5 RGNS GY) -

> BRI ERE TR, EANFLEAETEERER:
PRI B2 03O0 BLARIR BEAT — KR R, 1T B & 28 IR IR R AR 3
TEIRRE.

> ERBTEBRWUTREMRER: shhFEALILE.

> HEEETERIREER, BAZILEARREEMEZILELN
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[1 Combination with Counterion

Example 1
H—6CH2(|3H+ CHZ(fH (OCOCF3) — H—CH, ?H )—CH2C|H— OCOCF;

Ph Ph Ph Ph
Example 2 H—FCHC(CH)zFrCHZC*(CH3)z(BFsOH) "—»
H— CH>C(CH3)> 1 CH2C(CH3)2(OH) + BF3

H—f CH,C(CH3), 17 CH,C ™ (CH3),(BCI3OH) —=
H— CH,C(CH3),17CH,C(CH3),Cl + BCI,OH

or

K
{HMnl\/l*(lzr—t» HM.M(1Z)  (6-5) }

FTREFHRELLAR SRETEABESEMNLEEIL! BH3l%
23| K IR AR TR |
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[0 Chain Transfer to Polymer &S 56+5
" H
7o CH,-CH-CH,-CH(1Z) " —= wwCH, + H'(12)”
N Ph
® :
Intramolecular eIectrophiIic a terminal indany|
aromatic ubstitution, structure

backbiting, [1]I

o IREAAE T RS RS 3 Blo— ke (W WD BEN
y8asyisk:: AN USE

h j B j
e CHy=C + ~r CHp =G — 3 ann CHy—C-H + rnnr CHy—C i
H H H Y

a propagating

. 3° H -
carbocation (2° C*) branching
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NelhAac Tioamefar ~nnAd T IR » Y
D uther | ransrter and I ermination Reactions

(D»

BERRE T QAL 2l B N B S S AR R TP U B0 - BE A ) 4
Ay (A R4l
+ ) ktr,S + )
HM M*(1Z) + XA - HM.MA + X*(12)

> REHEBASER SR TR (SR RIERD |, AR A Rk
FWe, OWEI R BRI T

> EEEBRFINAEZRB SR, FARRNEBRAOETERNZIEAR,; K. B
. BBk ARELESEFES.
HM M*(1Z) + :NR; — HM.MNR(IZ)
an inhibitor the stable cation
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6-2b.

RN F

~~ g v

A. B FRIEX

A\

i

K

[+Z2Y S Y+(IZ) (6-1a)

Y+(IZ)- + M y YM+(IZ)" (6-1b) R, = Kk [1][ZY][M] (6-6)
HM +(1Z)- + M L HM,M*(IZ)- (6-2) R, =k, [YM*(IZ)"][M] (6-7)
HM _M+(IZ)- K HM M(1Z) (6-5) R, =k,[YM*(IZ)] (6-8)
KT LERBIF46

[YM*(IZ)"] = 88K Pty gk i S [YM*(IZ)"] = Kk,[T][ZY][M]/k,
FaSMBE: R =R, (6-9)

(6-9) XA (6-7) L, Rik,[M] Kkik [IIZYIIM]?

19 4 e ek PR K, (6-10)
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MR g o R _ kM

=R =T | @)
e

() BT “#BKAbhLERBFES” N, HBEELERMNAEREHE “EE8a
k44557 (Eq.6-3). “HRZIE” (Eq.6-4) 1 “miEERHFI(S)ER”
BEREFRIEK(Eq6-10)IAER (RESHEMHETE DM AR F(FEL

SIRFIKE) . BR, REELIREERAE TR, oo
\ tr,M \

_ R, M=

Xp = - :

" Ri+ Ris + Rem + Rirs (6-12) ! Ce = Kir,s

! Kk
ok P L

Ris= kis[YM*(12)7] (6-13a) |

Rirm = Ky m[YM*(12)7][M] (6-13b)

{ R, = ko [YM*(1Z)][M] (6-7)
Ry s = ki s[YM*(12)7][S]  (6-13c)

R = k{YM*(1Z)] (6-8)

kp[M]

Xy =

= +
kp[M]

ki + Kis + Ky mu[M] + Ky s[S]

(6-14) 24



(i) & “MTEEBHN O EBR” K1k TahhFEg, WSHEBESERTE!
N FRIENA
Kkikp[[ZY]M]?
(6-16)

Kt + Kir,s[S]

(iii) gRAE SR RE T, 5IAG 3L 5 RGP IR E R M. (Eq.6-1a) 22
PRE D BR, W5 R B T HARHKE . Eq.6-17. HZERILI(Egs.
6-10 6-16)RAEANAZIE — R 5 [M]KIELE . (HARREREGRIFAZL, 1)
Al HEq.6-154i&

R; = kq[l][ZY] (6-17)
(iv) HIFZPHEF
ApiL; PHEFE
e

LN O

Ath, IFHEK L KREYM(1Z) | Wi B BE
BRI T HEH L TR R A BLIE ik BI7S AR

2
Pa
=

25



B. 3h /) 5 A3k

O WHZE: ABEFRERNZIMERELN(, kK, k, kg, k)BE
HIEFZE, BARMFIFEERSEETHEIT, EKYFHERE BIRYER
ZE o

)_(n do not depend on
1 ki Kis [S] either steady-state reaction

X - KoIM] ¥ koIM] *Cu+ Cs [M] conditions or a knowledge
of [YM*(1Z)]
Experiments with varying : i
[M] in the absence of S AAbear plekel X, Ve [M]

1 K k 1%
(), 1,
Xn ko  kp [M]

the slop " intercept

Gty species concentration? the individual

o
(kilkp + kslkp) kislky,  a) short-stopping rate constants
b) rapid-scan spectroscopy

End-group analysij> Kk k, ? the propagating
L b
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Table 1. Kinetic parameters in styrene polymerization

Parameter
[styrene]
[CFSSOBH]
k.

K,

kp+

-+
kp

k.

k,

ktr, M

Value

0.27—0.40 mol/L

3.8 — 7.1 x 1073 mol/L
10—23 Liters/mol-sec
4.2 x 1077 mol/L

1.2 x 10° Liters/mol-sec
1.2 X 105 Liters/mol-sec
170 — 280 sec™!

<o0.01k,,

1~ 4 x 103 Liters/mol-sec

Initiator: CFBSOBH
Solvent: CICH,CH,Cl
20°C

k,*: free-ion
propagation rate
constant

k,*: Ion-pair
propagation rate

constant

. —BmME, k' HERSBIINHER.

2. k> ke, ko <<k
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Table 2. Propagation rate constants

Monomer Initiator Sol. Temp/°C  k_x10~*(L/mol-sec)
[sobutylene Radiation  Bulk 0 15 000
p-Methoxystyrene Ph,C*SbCl,~ CH,CI, 10 36

Styrene Radiation  Bulk 15 350

i-Propyl vinyl Ph,C*SbCly~ CH,CIL, o 1.1

ether

Why cationic polymerization are generally faster than radical
polymerization?

Cationic polymerization vs radical polymerization:

> k p (cationic) ~ / >k p (radical)’ kt (catioic) << kt (radical)
» Rp(catlonlc) oC kp/ kt’ p(radical) oC kp/ kt (radlcal (1~10_2) ﬂq-':_F'Z: IE-I $'1ZIK ’
AIEMIERILEENLERERTSEH 4 1M8ER!

> [P*](Cationic) =105 mol/L, [P.](radical) =107~102 mol/L

28



Table 3. Monomer chain-transfer constants C,,

Styrene Isobutylene in CH,CI,
Initiator ~ Sol. e
SnCl, CcHg 30 1.9 TiCl,-H,O —20  21.2
SnCl, ( HBr 03 0.51 —78 1.52
TiCl, CcH 30 2.0 TiCl,-CL,CCO,H —20 26.9
TiCl, CH,Cl, -60 o0.04 —78  2.44
BF, CeHg 30 0.82 SnCl,-CL,CCO,H —20 60
BF, CHCl, -50 0.057 s
CF,SO,H CH)CL, 20 1.5 BF,-H,0O —25  15.5
0 30

> RO AR RE R R AL (Cy) W LR T M Cy i Ka~27 4%
w, X5 T REBOR I RER IS A — 2

> —RRIRK, BERRKLBBEER, (8. Cy=10"-1072, LERE
REMR2~IHEL. AHMEESE: Cy = 103~1075

> BIAREEMIFE: CHEH > ZTH > XKk > RRE L



Table 4. Chain-transfer constants for some compounds (C) in styrene

polymerization

Imjue}tf)r O  Golvent Temp/°C Transfer Cyx 10
Coinitiator agent

SnCl, C 30 CeHg 0.22
SnCl, CcHg 30 CH,OH 312
SnCl, (CH,CI), 30 CH,OH 90
SnCl, CCL,/PhNO, o CH,OCH, 162
SnCl, C.Hg 30 (CH,CO),0 960

BF, CeHg 30 CH.CO,H 144

> BH GBI TR Cn I EE T I CH,0) BG5Sk HEAL )
(In: CH,0CH,) MIBEHAET], HAEH S ABOR.
> BESURAS LSRR A MR I AR, A BER RS 0 ) BE A A

HACARAR K.

PHEFRENERSR: R34k, RIEK. 5%, BEILE
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=“1f‘
L.

O

app.
kP

CH,CI,
CH,CI,/CCl,
ol
ccl,

=N EFES
RH R

Solvent

(¢ = 9.08)

(3:1)

(1:1)
(s = 2.24)

RUIBRIEFREE

YAl =

Table 5. Effect of solvent on cationic polymerization of
p-methoxystyrene by I, at 30°C

k2P (Liters/mole-sec)

17
1.8
0.31
0.12

r

B I )
PALR

> W e AR AN
[ 38 1 A0 ey 1
HCREE, NI
T B A TR I B

J& .

\

s e )
R LR AL

J

The kPP increases by more than 2 orders of magnitude in going CCl, (&=
2.24) to CH,Cl, (&= 9.08).
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Table 6. Cationic polymerization of styrene in (CH,Cl), at 25°C

Initiator I, SnCl,-H,O HCIO,
Counterion I [SnCl,(OH)]- Clo,~
k,2PP, Liters/mole-sec 0.003 0.42 1.70

= TR RS ] S G KR S E AN G E, DR

Jriiﬁﬁ;lf?f%?k/rr‘—'lzf b 22t 17 AN a4 Fh (_LAZ%L lilzhaz N H

“H I AN 7y L=y - HoE LN N\ ey J / LIS

AR R B ok ATk A BAT BT

= [AHEEEY: REFILT %’%ﬂﬂ%?ﬁﬁ’ﬂfi}l‘?fﬁ'fi IR A BH B 1
EETHRE TN ERETY; 2R, RETFTEASHEHETFHNR
N EME AN, ERENE (i'ﬁ"tt) %W"ﬁ%ﬁ/ﬁkﬂﬁm’“ﬂk%q]ﬂiﬂ

HERE TN
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O RENM o R
m%?%é%
Rikp[M] Kkiko[1[ZYIM]? ARG RE, A
=k kt En=Er BB | [ it min

> E-=E._ -E &TC'%%%IJG'%

+ o I X, P RS . o
TRk RE (11 BRI
— Aa E4RT ATV Y EN

k=Ae apter, A A

e AHFEIH
RZRFEETEWEE: Er=-20~ 40 kJ/mol N~ ~

> BEER
EE.ﬁMﬁ#$ REFEHESREANENRE. RUETRMEE
REERAIEME. ErfEATIRRMA E, > (E;+E). TempT ET R

Py
I
I

> REESZEEEMNEE: Ex,=-12.5~-29 kJ/mol
REELSERLESERNE, BANLHEEZLEANNM, E 5 E, BEX
FE,. REREEAHTMRE s EEEZER, Eitt, Temp.T X,

33



-3050 -78 -100 -146C

iR FE.

> fE-100°C A4 RFE KA Y
/ WIAE, XN Ex, = -23.4
24 —3a kJ/ mole. FKHHLE
n oL ILREAR AL, 2 11 3

FAREER Y (kT —100C)

i - [0 AR (T -

100C ) .

102 R R E— > IXFPEx AR A (b

4 5 6 1 8 N . .

1T (10°3), K-’ D U ISl R AN [R) 2R

Fig.3 Temperature dependence of X, | ZB 34K 4 Fh A X LU A5 11 52
for the polymerization of isobutylene BT 3

initiated with aluminum chloride

(AICI3)

103
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6-2d. BAEFE &S/ T A Commercial applications of
cationic polymerization

O ZRETH Polyisobutylene Products

T R R AST AP S RS R R e T M i 2 B TR G B
HEHI N ] e 7p 1 T EIE A e IR AR RS

Polybutenes

A copolymer containing ~80%
isobutylene and 20% other
butenes (mainly 1-butene)

M < 3000.

Adhesive, cosmetic,

Fuel

sealants, lubricants, plasticizers N
Additives

additives for motor oils, etc.
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L.\JVV IVIVYV p Iy UNMU y

M, 5~10x10* sealant, caulking

|\l hl\ll anNnaoac
1Iviiuvo

High MW polyisobutylenes

M, >10° uncured (uncrosslinked)

rubber products, impact modifiers of
thermoplastics.

Butyl rubber (BR):

> Sporting equipment
for the bladders in basketballs,

A copolymer of isobutylene with small
amounts of isoprene produced by AICI;

initiated polymerization. footballs, soccer balls and

other inflatable balls to

provide a tough, airtight inner

CHy  GHs GHi CHy  CHy
—— CHp—C— CHp—~C— CH-C=CH CH,~C— CH,~C—— compartment.
CHj CH; © v ’ CHj CHs .
\ , |soprene unit > Roof Repalr
isobutene unit > Gas masks & chemical

agent protection
36



63 BERAHHEEFES

Bt A

> WRMASETFRESER, AHE RSP KV RS FX
(anionic ion pair) M EMHPEEF (free ions) , FEBIFEIT IR E A$
FREN R

> EBFREEAR, EEFREESPEFHNBERAEFIENE
EZRRK.

> REE P REEFE AR FREELT, ERDRHE 7RG
FEXTIREEUR ARXZHABTRSRNERIERGELGE, TERR

S gE T 8im FHET .

> mw: BEIEMEEERE. B, xBEF. WmEsET (BSFRED
NEEfEAIBET .

> HFEHABFESERTEMES (iving polymerizations)
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6-3a 3| A& FATEC

- ~

]]]

O FE#Z%M4%31%F Nucleophilic Initiators

RIZIAA] (B:, B:) NaNH, LIN(CH,),. F##h (Alkoxide) . &%k
Y. WAL (Cyanides) . gk, 4. n-C,H.Li,» PhMgBr &%,

KNH, === @ H H Y
C4Hg|_i + CHQZC_Y — C4H9_(I:_CI::-(U+)

H H
i b followed by propagation:
iy H

C4Ho—C-C (Li") + nCHp=C-Y —
H H
H'Y

| |
O - CaHo{~CHoCHY-)—C~Cx (Li*)

H H

> IeE$E (Alkyllithium ) ATRER R AB ARSI AF], EEAEREET
B RIFRIARRE.




O ®B-F4#35|4 Electron Transfer Initiation

Overb 1959): : .
verberger (1959) H,C=C—CN { Li / NH5 (Liquid) fast
I
CHs LiNH, /NH; (Liquid)  slow
methacrylonitrile
Mechanism:

Li + NHs(liquid) = Li"(NH3) + e (NHs)
a solvated electron
(deep blue)

& (NHz) + CHp=CHY —> | CHy,—CHY <~—= CH,—CHY| (NH3)
a radical-anion

A g R Al R AR B G b, SR R R 0 Al 45 A A

PO TR P TR R - R — BB
B T — — U BT
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Sodium 20k

o T~ [C :
naphthalene e

[ ij radical anion (greenish-blue)
| PhCH-CH, <—=PhCH-CH, | Na*  +

KON A HhE-PE T

Na* + PhCH=CH, ——>

Phiy, 1, Ph
Z[PhCH -CH, < PhCH- CH2] Na*— Na* | :C-C' —C -C:"| Na*
H H
styryl dicarbanion 7K 2,45
Phiy, 1, Ph (red) X E T
Na* [7:C=C —C -C:"|Na" + (n + m) PhCH=CH, —>
H H
] P|h Plh-
Na*| - :C~CHz~t-CHPh-CH, 95t CH,-CHPh a—CHz—g::‘ Na™
H H
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polymerization
reactivity

CHZZC(CH3)C6H5
CH:CHC6H5
CHZZCH'CH:CHZ

RMgX CH,=C(CH3)CO,CHs
t-ROLI \‘Q\ N CH:CHCOZCHg

ROK
ROLi

. . | CH,=CHCN
o CH2:CH(CH3)CN

strong bases | . "\ | CH,=CHCOOCH,
Y
NR3k i \‘ CH,=CHNO,
\é/gaR ases CH,=C(CO,C,H5),
CH,=C(CN},
initiating 20 CH5CH=CHCH=C(CN)CO,C,Hs
activity

The initiator required to polymerize a monomer depends on the reactivity of

the monomer toward nucleophilic attack. 1



FEENET SR REETFE AR SN RE— 75T
%H?(
> GEREEIED, AEFEKPOREZHIE, Bk R
B R IR LRI R RS AN 2y
i’ |‘$Bﬂ%—?ﬂi’“ﬂﬁ?ﬁé’giﬁﬁ
D) fEEANRAERES, WD GrtiE 1) Fra EE R,
Elj@ﬁﬁ“%%zﬁﬂloo%ﬁ\ﬁﬁéiﬁf (EI N G
2) 15 5100% ARG, AMINAH R ) AR AN ] B A4, i — D IR G
PRI, 2 FRLs .
O Rkttt
" ]
"VWCHZ'Cl::- + Hzo —> "V‘NCHZ'C:lH + OH"

H H
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O BRZI1E

Iﬁ hydride
o CHZCH-CHZ-C:'Na+ elimination _
| I
Ph Ph Ph

H
I

Ph Ph

i CHZ?H-CH=CHPh + H:Na®

aoot CH-Cr™ + o CHpCH-CH=CHPh —» ~wCHy-CH,Ph + mCH2°c|§-CH=CHPh
|

Ph
1,3-diphenylally anion

> RELKBHE RS TR R &R
E, R AT AAE R . AER TR
THF. 1,2-dimethoxyethane) , XM E T
Ee e IR TR, 2k ) NVAR AT RERLFE X o-H
[1R)<F B A /BN C—O Bt itk L.

> T A S I M B S ) B T P OV T
FEWRE OGS TR 2

O

H3COCH,—CH,OCH;
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"~

O %

1

I'Z|I'KH‘

w -

W AR S AT 2 18 S SR A% b B L[, AP £ 1k s I A
WKTES, WA T &??é PIRIBE S R A 52 0%

IR

IE R

I~

|

CHVEE

7 o
[ \
CH,=C-C-OCH3 + R'Li* —> CH,=C-C-R + CH3O'Li" |
| ' 1. A copolymer of

CHs - CHs . MMA and the ketone
MMA i-propenyl  less active | - ii. R, slow down
alkyl ketone T ..
) back-bite
CH30\ //O o (l?
=3 CHj CH
o/ i S )
~rre CH, k) COOCHz — ~ CH; “COOCH, + CHgO
7N i
- CH; COOCH; . MW

CH; COOCH;,
Intramolecualr nucleophilic substution by a propagating carbanion

i. Ry
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O
I H H2 B:_
CH,=CH-C-CHy —, waHZ—<|:—C —CHww ———>

. |
methyl vinyl ketone O=C ?O
I

CHs CH,
H Ho e CH
v CH —<|:—c —(|:H-w — 2
O=¢~_ §° Hoﬁo
CHg CH, HsC

FAUIMY, PRI A S IS UL AR AT 2 31 AL BT R
KR SR IR
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6-3c HEHEFEENNEF

R ENIERFE:
O BERERE R34
1B1E4K .
d[M
R, =- Ej t] ko™" [M~1[M] | (6-17) T2 1k,
T HEsET%
) [M7] is the total concentration of all
[M] = [I] types of living anionic propagating
centers (free ions and ion pairs).
Mo
I = -
n M] kp[l]t (6-18)
i. Eq.6-17 @ T 5| ZRF LLIER R (RAYIFH N EAEAERR B

AT ZE G I DY BETH AL -

i, BOE M EREAR K5 BN 0 SRR 7 2 k30
ol £ A R, STk R TR K I R B A R sk
R KR, R Ik v (RUEKEEEE)
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iii. Lt FEHRERS, HEFEeRNEXRERSE!
BEHEESEHETFESHER

Radical polymerization Anionic polymerization
Rp — kp[M] [M] Rp — kpapp[M—] [M]
In hydrocarbon solvent: k@ = 1/10 ~ 1/100 k,

In ether solvent: kpaIOIO =10 =— 100 kp
[M-] = 10°~10-" mol/L [M-] = 104~10-2 mol/L

ERRERERERNEEZRE:
1. BEFRERZZIERN; 2. BKFEEMREZEANRX
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[

i

AN
= W ERES, MBS
e B S EE Y B KR 5 5E
zﬁ[£gzﬂ=”“£'[n 6.19) TEREREZLE.

B 538 R O TG« AT 1
greea ] dopandiaid SR 4 A g 1Y K5
e maodade ot Iniiation

PEW B T

> FE57M Molecular-Weight Distribution (MWD)
T IRIES A2 SRUEEHIEEN S FREMR (AMEERFEM . 1B

), BEY Y TS Poisson s AT :

=1 +—— =1 +

(6-20)

1
X,
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O R E
Table 7. Effect of solvent on anionic polymerization of styrene*
Solvent Dielectric k,2PP
constant (g) (liters/mole-sec)
Benzene . -
Dioxane
Tetrahydrofuran

1,2-dimethoxyethane 3 800

*initiator: Sodium naphthalene (3x1073 mole/L), 25°C

> ETFIRIRIEFLETLRE N imsR, REERFHIR,

> RVMERFW RN T RAEFLENRNES, HEEREER
RS F LIRS .

AR FRSEBREXTMBESERPARMMAKE T BFFLEFRIMER!
MR EFHNAERSKEE EFBSETERNERRIRE R,

49



A. BHBETEREXREIIE T B REREL

& [P 1[C"]
] S == (6-29)
P Ct + M——>PM C* [P C7]
ion pair
K ﬂ ﬂ K For the case where
- [P1=[C"]

P +C"+M——>PM + C*

free ion [P ]= (K[P- C*]Y? (6-24)

K (~107") under most conditions

Rp = kg [PTIIM] + K, [P"C*]IM] R, = - d[M)/dt= k™ [M][M] [P-C*] = [M]
(6-21) (6-17) BB XU B2 T 0 M S VR B
f— P~ - S rm-1— 7iztaa-N1/2 70 A AN\
K,[P] + Ky[P C7] P 1= (K[VI]) (0-£04)
k3PP = (6-22) U
[M] [P-C* = [MT] - (KIMT])Y? (6-25h)
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¢ LHRERNMARPFEEIERE A (IER KRS EER N5
B CZ R4, . JiANaBPh, rI#2 At = MNas) . HHIE T
U BEHE 32 B (RS TR -
[P] =K[M]/[C*] (ZW6-23, H[PC]~[M]D
KIS ER A Dy it s, 10 S 0 A B g AR DS, D) s - R
A ER R EE [CZ]:

[C+] = [CZ]
. BHMBABEFHNRE: [P]=KM]/[CZ]
BT XTI E [P-C+] = [M] = K[M~]/[CZ]

¥ BN Eq.6-22, 5 RITEIMNE 24 T BTG IR ZE B 4L
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600 B 1o ’ [ )
k; - ki) K
app k:|: ( p p) ( _2 )

kp P [M—]1/2

400 |

k. &PP

200 |-

Conductivity
measurements: K, [P-] and [P-C~]

0 1'0 2I0 3I0 4Io 5'0 6'0 70
[M -] -1/2

Fig.4 Polymerization of styrene by sodium naphthalene

in 3-methyltetrahydrofuran at 20°C.



200 |r

app
Ko
100

0 0.5 1.0 15 2.0 2.5
10 /[Na']

Fig.5 Polymerization of styrene by sodium naphthalene

in 3-methyltetrahydrofuran at 20°C in the presence of NaBPh,.
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B. BAE FRERAEMSE

Table 8. Effect of Counterion on Anionic Polymerization of St.(25°C)

Polymerization in THF k,*
Counterion k,* K x 107 ky for Dioxane
Li+ 160 A 2.2, 0-94
Na* 80 L5 6.5 X 104 3.4
K+ 60-80 0.8 (L/mol.s) 19.8
Rb* 50-80 0.1 21.5
Cs* 22 0.02 245 Y

) L
1) l(p >>K

Q/
ALl

: BHEFHREEMHEEFF K 102~103 n SkBaFkx.

2) K BT ESESRETFRIBENLEE—B. KEHZSE
T, IR

> Cs, XIE N N5 53 B & 5 B o 20 BB S 3 5~ AR BE RO = T 2 1

1%&.*“'3THF1Z|§?1‘E)§ = —L/\H\':F' W& B RS \BFJ%?XTFEHE

[FAREIK A k- #3E.

(k a )Dloxane

)THF (CSIET%)’ il

; BHEEENETHERLESRE T (FEX EFRABNET.

i = v
SR BT xR R R T 'ﬁIdE'“'ﬂai_#“ B Li

S ESTN



O+ o+
O+
5- 5&
o-
0- 5-
O- GDM
o+ ot

A sodium ion solvated by water molecules.
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C. imE RIS

>

WTER B R GBI MESENEE (Ey): EE. B
ROW-ZZWMR R Ep = 37.6 kJ/mol (dioxane); 4.2 kJ/mol (THF)
REREMEREREMIEX, ELRZRE®

> TR K VR A R R % Temp. T, k,” T k)t T (H2

& BTAHIKHE K hE
B R: BEEE R (k)
BRI T (k) . EF
518 B T X H0E 49 B
FEMH—E, XREEHS

K, P4,

D. &FI9MREFRZE S AR RN EE
Table 9. Propagation of polystyryl

sodium in THF at 20°C

Kk, 1.3 X 105 liters/mole-sec

k. 24 liters/mole-sec

k, 5.5 x 104 liters/mole-sec

Eur. Polym. J. 1, 19(1975)

08 5 T3t 5 5 B B T AT AL IR B
2431
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D. iiEEHFSINER

» A complication for polymerization initiated by
RLi in nonpolar solvents is association
(aggregation) of the various organolithium species
present in the reaction system.

The fractional kinetic orders — only monomeric
initiator and propagating ion pairs are reactive.

» Polymerization in aliphatic hydrocarbons is
considerably slower than in aromatic hydrocarbons.
» The association phenomena occurring
with alkyllithium initiators in nonpolar
solvents results in very low

N
polymerization rates. 0/ % \0
0
0 0

v o AL
T N

18-crown-6 [2,2,2]Cryptand




6-4 #REZIHEEY)
n-BuLi + B Solvent . o M— Li*
\ n-Bu n-1 !
6-4a Sequential Ph
Ph Ph
Monomer Addition PS
A solvent
R AAA
¢ i N \[\/\/\]\/\/_ Li”
m-1
- PS-b-PB
R AAA M BBB
n solvent
H-,O \
¢ 2 Ph Lewis base
R AAABBBH

PS-b-PB-b-PS -



> AE A BOEINRLR R

f1: St-b-MMA @ .
PS-BYHE % Lk PMMA-533 ! ‘:

> WINEESI A F: & B *
ABA, BABAB, CABACI K ag=

Rk BOLER D). Q
) powsnmeu “
Sodium naphthalene —

MMA-styrene-MMA

-
1000 A

e »BUXQL\ SBS block copolymer schematic
Li microstructure
| Thermoplastic Elastomers
oo IR

St-Ip-St, St-Bd-St ABA block copolymer (Trade names: Cariflex, Kraton,
Soloprene). Thermoplastic elastomers (TPE) have the advantage that they
can be processed as thermoplastics instead of thermosets. The polymers
are used for shoe soles and adhesives.
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There are six generic classes of commercial TPEs:

e Styrenic block copolymers (TPE-s)

e Polyolefin blends (TPE-o0)

e Elastomeric alloys (TPE-v or TPV)

e Thermoplastic polyurethanes (TPU)

e Thermoplastic copolyester

e Thermoplastic polyamides r,\/

three essential characteristics: Applications:

1) The ability to be stretched to moderate snowmobile tracks;
elongations and, upon the removal of stress, Catheters (= 5%)
return to something close to its original shape. electrical cable

2) Processable as a melt at elevated temperature.

3) Absence of significant creep. jacket/inner

insulation....
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6-4b Telechelic Polymers E/NE &4 [ Telechelic polymers,
containing one or more end

groups with the capacity to
?I) react with other molecules,

o AA D are useful for synthesizing
-C-NH-R-NH, block and other types of

copolymers.

1W TOCN-R-NCO . v,

_1.CO
var AAA-CH,CH,-OH <2 v AAR =2 & v AAA-CH,CH,CO,H
2. H H,

2. HY,
H,O lBrCHZCH=CH2

v AAA-CH,CH=CH,
macromonomer (macromer)

HZN@ (CHa)sSiCI_ (H3C)3S‘HN©T s-CaHoli_
b=\ \

the disired group acid

Li M hydrolysis
(chksm@—& T e HpN—e
C,sH — Si(CH3)5

4Mg
the protected initiator 61




6-4¢ Coupling Reactions {HEL

» Living anionic block copolymers can be linked by coupling reactions.

» Coupling reactions allow the synthesis of star polymers by using a
multifunctional coupling agent.

BrCHz(CHz)ArCHzBr
y o

M ARDBm WAnBﬁCHZ)G_BmAnW
ABA triblock copolymer
1:“%. . .:-.f:'_".f. An
v ~ Ap + SiCly — “An=Si-Ay~ Star polymer
An
. CH,CI 5 P
N
CH,CI i
N~ °N
e A
AN N 7
CH,ClI A

1,2,4,5-tetrachloromethylbenzene triallyloxy-s-triazine o



6-4d Transformation Reactions

B3R S N 3o Bk A1 5 45 s v i AR 1 K

0 SR 5 ik BUL R W)

The anionic to cationic:

_ . cocl,
o AAA Li* ——= s AAA-COCI

¢AngF6
B

wane AAATSFg — v AAAwe BBBSbFg

The anionic to radical:

CIPb(CHs)s
~LiHCI

U'U'\.N'\AAA_ |_|+ ' WWAAA'Pb(CHg)g

heat ¢ -(CH2)sPb-

B

63



65 BTRESEEERSHLLE/XS

Ionic polymerization Radical polymerization

Polymn. temp. < 0°C > 50°C

Ey (active energy) —20 ~ 40 kJ/mol 84 ~ 105 kJ/mol
Solvent effect remarkable

Counterion effect remarkable

Radical scavenger unaffected suppressed

Chain transfer constant? Copolymerization behavior?

mOEN O,N
Ph Ph, R
R\ N-N NO, —»  N-N NO,
PH Ph
O,N O,N

2,2-diphenyl-1-picrylhydrazyl (DPPH)

O
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6-6 =FIHE2 /R Ionic Copolymerization

O FXSF H BRI, BRI B mrieFebt; BFHEE
BAMBHERD.

O HrLRERNVERIHIBERRYNRE (rr,~1), PR FAE
B K A O s TSR A AR ]

O RAOHELEHILEMN (a-FIEKLME/IKRNE)

O rr, > ETFIERN A Z . Hik, PR s & B AR &
LR PIAE LA

O HARTERZEN T 5 AR N A 0T Bl B 10728 A0 JE Bl
M B LR A ) BAARTE B AR A KA T e V. 25
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6-6a Reactivity

Kennedy & Marechal (1983): [A] BN AL HUARAK 405 5 K &4

QCH:CHZ

FHE AW ME: p-OCH3 > p-CH3 > p-H > p-Cl > m-Cl > m-NO2

Tkl logl/r) ~o o UG O
p: W H, Ronfbi-r3EAE 1/, 390,
p: 1EMH, RoRWRH-FIAE 1/

O.

R

meta- and para-
substituted St

e

St (the reference
monomer)

—0.27 —0.17

0O +0.23 +0.37

+0.71

& KM vinyl ethers > isobutylene > styrene,

isoprene

- BX

>~ 2K

Hammett Eq.:
log(1/r)=poc
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ALK Steric e

K g -

Table 9. Steric effects in copolymerization of a- and -methylstyrenes

(M,) with p-chlorostyrene (M,). SnCl, in CCl, at 0°C.

M, r, r,
Styrene (St) 2.31 0.21
a-methylstyrene 9.44 0.11
trans-f-methylstyrene 0.32 0.74
cis-f-methylstyrene 0.32 1.0

= HT o-CH, WHEETAER,  o- 2R LG RIS PER K
= METIHRLH, B-H R LM i TR, R W] B-CH, I SLARAL

BHAG N R T8 A AR R o
= RAB- IR M R P LI
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O FEE IR N A, BARRTEE S P ISR A PR IR A A e
S i R P M P iy o MR IR A PR T 0B B, B
JR AR 2 LR ARUE
AR g B AT PR U+

- CN>-CO,R>—-Ph>-CH=CH, >-H
> ARZUAETHE. BEHRE
> SR OISR, BEAF IR M

© CH3@CH=CH2 5.3 0.18 0.95

CHs 35 0.003 0.1
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6-6b Effects of Solvent and Counterion

Table 10. Effect of solvent and initiator on r values

r, r, L
(isobutylene) | (p-chlorostyrene) Solvent (¢) mitiator 71 A 135
1.01 1.02 n-C¢H,, (1.8) AlBr, LRI

B AR

14.7 0.15 CsH,NO, (36) AlBr, 55 2% (1) B0

8.6 1.2 CsH,NO, (36) SnCl, 7, MEDLFn

= AlBr-5| %6 R: (EFEAIEA B (n-hexane), HRPERIK IR H K Z
o (R K O B (RGO SR 2 B IL”
SER AT . (eI, B LT R AT U
XEUR LSRR B “HAIL

= ST AU 2R R W T AIBr FISnCI, 51 R FIFE I AR [,
Flrye BB T00 B0 S R AT —SE G
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Table 11. Effect of solvent and counterion on copolymer
composition in styrene-isoprene (St-Ip) anionic copolymerization

% St in Copolymer for Counterion
Solvent Na* Lit 'Ofri‘gf]?"
None 66 |5
CH, 66 |5
Et;N 77 59
Et,O 75 68 loose
THF 80 80

ARTRIBH B 1AL 8E, ANRERAI. 20 JT 25 AT AT B i 1 RN o

> N TREEEH S TLY, WA R . AR, GEI
HRYIEHRZWEARIE R R WG Hot, ORI st ess & Liv.

> AR, BOREPUE WML JPANESE, BB, SR A R
S ST/ B
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6-6¢ Effect of temperature

O MTFEBERSG, EH&TESD, X PARTEREAEK
Wi, HAEHEZELERD, MEENRSEAZTERE ( r ) &R
, BB FERBAEFEIERE.

Table 12. Copolymerization of St and 1,3-butadiene (Bd) by s-BulLi

Solvent Temp. °C r, St r,, Bd
n-hexane ° 0-03 133 *
50 0.04 11.8
THE -78 11.0 0.04
25 4.0 0.30

> ICRMOVAEARM PR e BGOSR T ,3- T R e 4
s BRI S, WRARRRE R AEMRYER A, SRR T A
ARG T
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